MatterGPT and SLICES v2.0.0
SLICES 2.0.0 Changelog
- Introduced MatterGPT model, a GPT2-based large language model for solid-state materials, specifically designed for inverse design of solid-state materials. It excels in multi-property inverse design. For details, see [ paper ]. Added three new Jupyter tutorials (2.1, 2.2, 2.3) to help users get started with experiments. Add an online demo for MatterGPT [Online Demo for MatterGPT].
- Updated SLI2Cry algorithm: Replaced M3GNet IAP with CHGNet IAP in the third step, further improving invertibility and enhancing SLICES crystal decoding capabilities. Add an online demo for SLICES [Online Demo for SLICES], allowing online conversion between SLICES and CIF.
- Set CrystalNN as the default crystal chemical bond recognition algorithm for SLICES encoding.
- Adopted SLICES strategy=4 as the new default encoding method. This encoding can shorten SLICES length by about 40%, effectively reducing computation for large models. Example of the new encoding:
C C 0 1 ooo 0 1 +oo 0 1 o+o 0 1 oo+
This simplifies the offset vector from three separate tokens to one token, streamlining the SLICES string. - Relocated new version code files to the 'slices' folder. Changed the SLICES library import command from:
from invcryrep.invcryrep import InvCryRep
to the more intuitive:
from slices.core import SLICES - Docker image now uses 'python setup.py develop' to install code from the /crystal/slices folder, facilitating SLICES algorithm development. Users can directly modify source code in /crystal/slices, ensuring the docker-called SLICES library is always up-to-date without reinstallation or environment reconfiguration.
- The Custodian package is utilized for automating DFT verification calculations with VASP, providing error handling and workflow management capabilities.
SLICES 2.0.0 更新日志
- 引入MatterGPT模型,这是一个基于GPT2的新材料大语言模型,专门为凝聚态材料逆向设计打造,擅长进行多性质逆向设计。详情请参阅 [ 论文 ]。新增三个Jupyter教程(2.1、2.2、2.3),方便用户快速上手逆向设计新材料。 添加了一个在线演示 [材料大模型在线演示].
- 更新SLI2Cry算法:将第三步的M3GNet IAP替换为CHGNet IAP,进一步提高可逆性,增强SLICES晶体解码能力。添加了一个在线演示 [SLICES编解码在线演示]. 可以在线对SLICES和CIF进行转换以及数据增广。
- 将CrystalNN设置为SLICES编码使用的默认晶体化学键识别算法。
- 采用SLICES strategy=4作为新的默认编码方法。这种编码可以缩短SLICES长度约40%,有效降低大模型的计算量。新型编码示例:
C C 0 1 ooo 0 1 +oo 0 1 o+o 0 1 oo+
这种方法将偏移矢量从三个独立的token简化为一个token,有效精简SLICES字符串。 - 将新版本的代码文件放在slices文件夹中。调用SLICES库的命令从:
from invcryrep.invcryrep import InvCryRep
变为更加直观的:
from slices.core import SLICES - Docker镜像现在使用'python setup.py develop'安装/crystal/slices文件夹中的代码,方便进行SLICES算法的开发。用户可以直接在/crystal/slices中修改源代码,确保docker调用的SLICES库始终是最新版本,无需重新安装或配置环境。
- DFT计算使用custodian进行自动化纠错,提高计算成功率。