Skip to content

[Usage]: vllm serve setup issues on B300 #30441

@navmarri14

Description

@navmarri14

Your current environment

The output of python collect_env.py



Collecting environment information...
uv is set
==============================
        System Info
==============================
OS                           : Amazon Linux 2023.9.20251208 (x86_64)
GCC version                  : (GCC) 11.5.0 20240719 (Red Hat 11.5.0-5)
Clang version                : Could not collect
CMake version                : version 3.22.2
Libc version                 : glibc-2.34

==============================
       PyTorch Info
==============================
PyTorch version              : 2.9.0+cu130
Is debug build               : False
CUDA used to build PyTorch   : 13.0
ROCM used to build PyTorch   : N/A

==============================
      Python Environment
==============================
Python version               : 3.11.14 (main, Nov 12 2025, 00:00:00) [GCC 11.5.0 20240719 (Red Hat 11.5.0-5)] (64-bit runtime)
Python platform              : Linux-6.1.158-180.294.amzn2023.x86_64-x86_64-with-glibc2.34

==============================
       CUDA / GPU Info
==============================
Is CUDA available            : True
CUDA runtime version         : 13.0.88
CUDA_MODULE_LOADING set to   : 
GPU models and configuration : 
GPU 0: NVIDIA B300 SXM6 AC
GPU 1: NVIDIA B300 SXM6 AC
GPU 2: NVIDIA B300 SXM6 AC
GPU 3: NVIDIA B300 SXM6 AC
GPU 4: NVIDIA B300 SXM6 AC
GPU 5: NVIDIA B300 SXM6 AC
GPU 6: NVIDIA B300 SXM6 AC
GPU 7: NVIDIA B300 SXM6 AC

Nvidia driver version        : 580.105.08
cuDNN version                : Could not collect
HIP runtime version          : N/A
MIOpen runtime version       : N/A
Is XNNPACK available         : True

==============================
          CPU Info
==============================
Architecture:                            x86_64
CPU op-mode(s):                          32-bit, 64-bit
Address sizes:                           46 bits physical, 48 bits virtual
Byte Order:                              Little Endian
CPU(s):                                  192
On-line CPU(s) list:                     0-191
Vendor ID:                               GenuineIntel
Model name:                              Intel(R) Xeon(R) Platinum 8559C
CPU family:                              6
Model:                                   207
Thread(s) per core:                      2
Core(s) per socket:                      48
Socket(s):                               2
Stepping:                                2
BogoMIPS:                                4800.00
Flags:                                   fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx_vnni avx512_bf16 wbnoinvd ida arat avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq rdpid cldemote movdiri movdir64b md_clear serialize amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
Hypervisor vendor:                       KVM
Virtualization type:                     full
L1d cache:                               4.5 MiB (96 instances)
L1i cache:                               3 MiB (96 instances)
L2 cache:                                192 MiB (96 instances)
L3 cache:                                640 MiB (2 instances)
NUMA node(s):                            2
NUMA node0 CPU(s):                       0-47,96-143
NUMA node1 CPU(s):                       48-95,144-191
Vulnerability Gather data sampling:      Not affected
Vulnerability Indirect target selection: Not affected
Vulnerability Itlb multihit:             Not affected
Vulnerability L1tf:                      Not affected
Vulnerability Mds:                       Not affected
Vulnerability Meltdown:                  Not affected
Vulnerability Mmio stale data:           Not affected
Vulnerability Reg file data sampling:    Not affected
Vulnerability Retbleed:                  Not affected
Vulnerability Spec rstack overflow:      Not affected
Vulnerability Spec store bypass:         Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1:                Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:                Mitigation; Enhanced / Automatic IBRS; IBPB conditional; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds:                     Not affected
Vulnerability Tsa:                       Not affected
Vulnerability Tsx async abort:           Not affected
Vulnerability Vmscape:                   Not affected

==============================
Versions of relevant libraries
==============================
[pip3] flashinfer-python==0.5.3
[pip3] numpy==2.2.6
[pip3] nvidia-cublas==13.0.0.19
[pip3] nvidia-cuda-cupti==13.0.48
[pip3] nvidia-cuda-nvrtc==13.0.48
[pip3] nvidia-cuda-runtime==13.0.48
[pip3] nvidia-cudnn-cu13==9.13.0.50
[pip3] nvidia-cudnn-frontend==1.16.0
[pip3] nvidia-cufft==12.0.0.15
[pip3] nvidia-cufile==1.15.0.42
[pip3] nvidia-curand==10.4.0.35
[pip3] nvidia-cusolver==12.0.3.29
[pip3] nvidia-cusparse==12.6.2.49
[pip3] nvidia-cusparselt-cu13==0.8.0
[pip3] nvidia-cutlass-dsl==4.3.3
[pip3] nvidia-ml-py==13.590.44
[pip3] nvidia-nccl-cu13==2.27.7
[pip3] nvidia-nvjitlink==13.0.39
[pip3] nvidia-nvshmem-cu13==3.3.24
[pip3] nvidia-nvtx==13.0.39
[pip3] pyzmq==27.1.0
[pip3] torch==2.9.0+cu130
[pip3] torchaudio==2.9.0+cu130
[pip3] torchvision==0.24.0+cu130
[pip3] transformers==4.57.3
[pip3] triton==3.5.0
[conda] Could not collect

==============================
         vLLM Info
==============================
ROCM Version                 : Could not collect
vLLM Version                 : 0.12.0
vLLM Build Flags:
  CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
        GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    NIC0    NIC1    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      NV18    NV18    NV18    NV18    NV18    NV18    NV18    SYS     SYS     0-47,96-143     0               N/A
GPU1    NV18     X      NV18    NV18    NV18    NV18    NV18    NV18    SYS     SYS     0-47,96-143     0               N/A
GPU2    NV18    NV18     X      NV18    NV18    NV18    NV18    NV18    SYS     SYS     0-47,96-143     0               N/A
GPU3    NV18    NV18    NV18     X      NV18    NV18    NV18    NV18    SYS     SYS     0-47,96-143     0               N/A
GPU4    NV18    NV18    NV18    NV18     X      NV18    NV18    NV18    NODE    NODE    48-95,144-191   1               N/A
GPU5    NV18    NV18    NV18    NV18    NV18     X      NV18    NV18    NODE    NODE    48-95,144-191   1               N/A
GPU6    NV18    NV18    NV18    NV18    NV18    NV18     X      NV18    NODE    NODE    48-95,144-191   1               N/A
GPU7    NV18    NV18    NV18    NV18    NV18    NV18    NV18     X      NODE    NODE    48-95,144-191   1               N/A
NIC0    SYS     SYS     SYS     SYS     NODE    NODE    NODE    NODE     X      PIX
NIC1    SYS     SYS     SYS     SYS     NODE    NODE    NODE    NODE    PIX      X 

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: ibp198s0f0
  NIC1: ibp199s0f0

==============================
     Environment Variables
==============================
LD_LIBRARY_PATH=/opt/amazon/openmpi/lib64:/opt/amazon/efa/lib64:/opt/amazon/ofi-nccl/lib64:/usr/local/cuda/lib:/usr/local/cuda:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/targets/x86_64-linux/lib:/usr/local/lib:/usr/lib:/lib:/opt/amazon/openmpi/lib64:/opt/amazon/efa/lib64:/opt/amazon/ofi-nccl/lib64:/usr/local/cuda/lib:/usr/local/cuda:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/targets/x86_64-linux/lib:/usr/local/lib:/usr/lib:/lib:/opt/amazon/openmpi/lib64:/opt/amazon/efa/lib64:/opt/amazon/ofi-nccl/lib64:/usr/local/cuda/lib:/usr/local/cuda:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/targets/x86_64-linux/lib:/usr/local/lib:/usr/lib:/lib:/opt/amazon/openmpi/lib64:/opt/amazon/efa/lib64:/opt/amazon/ofi-nccl/lib64:/usr/local/cuda/lib:/usr/local/cuda:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64:/usr/local/cuda/targets/x86_64-linux/lib:/usr/local/lib:/usr/lib:/lib
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1

How would you like to use vllm

Hi, I am facing issues when using vllm on B300 instances.

launch command

vllm serve --tensor-parallel-size 8    \
 --kv-cache-dtype fp8     \
--tool-call-parser glm45     \
--reasoning-parser glm45     \
--enable-auto-tool-choice     \
--model zai-org/GLM-4.6-FP8

Error logs (attached full log)

�[0;36m(Worker_TP2 pid=340105)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822] 
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822] WorkerProc hit an exception.
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822] Traceback (most recent call last):
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/vllm/v1/executor/multiproc_executor.py", line 817, in worker_busy_loop
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     output = func(*args, **kwargs)
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]              ^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/utils/_contextlib.py", line 120, in decorate_context
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     return func(*args, **kwargs)
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]            ^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/vllm/v1/worker/gpu_worker.py", line 324, in determine_available_memory
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     self.model_runner.profile_run()
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/vllm/v1/worker/gpu_model_runner.py", line 4357, in profile_run
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     hidden_states, last_hidden_states = self._dummy_run(
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]                                         ^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/utils/_contextlib.py", line 120, in decorate_context
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     return func(*args, **kwargs)
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]            ^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/vllm/v1/worker/gpu_model_runner.py", line 4071, in _dummy_run
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     outputs = self.model(
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]               ^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/vllm/compilation/cuda_graph.py", line 126, in __call__
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     return self.runnable(*args, **kwargs)
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/nn/modules/module.py", line 1775, in _wrapped_call_impl
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     return self._call_impl(*args, **kwargs)
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/nn/modules/module.py", line 1786, in _call_impl
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     return forward_call(*args, **kwargs)
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/vllm/model_executor/models/glm4_moe.py", line 708, in forward
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     hidden_states = self.model(
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]                     ^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/vllm/compilation/decorators.py", line 514, in __call__
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     output = TorchCompileWithNoGuardsWrapper.__call__(self, *args, **kwargs)
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/vllm/compilation/wrapper.py", line 171, in __call__
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     return self._compiled_callable(*args, **kwargs)
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/_dynamo/eval_frame.py", line 845, in compile_wrapper
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     raise e.remove_dynamo_frames() from None  # see TORCHDYNAMO_VERBOSE=1
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/_inductor/compile_fx.py", line 990, in _compile_fx_inner
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     raise InductorError(e, currentframe()).with_traceback(
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/_inductor/compile_fx.py", line 974, in _compile_fx_inner
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     mb_compiled_graph = fx_codegen_and_compile(
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]                         ^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/_inductor/compile_fx.py", line 1695, in fx_codegen_and_compile
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     return scheme.codegen_and_compile(gm, example_inputs, inputs_to_check, graph_kwargs)
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/_inductor/compile_fx.py", line 1505, in codegen_and_compile
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     compiled_module = graph.compile_to_module()
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]                       ^^^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/_inductor/graph.py", line 2319, in compile_to_module
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     return self._compile_to_module()
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]            ^^^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/_inductor/graph.py", line 2325, in _compile_to_module
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     self.codegen_with_cpp_wrapper() if self.cpp_wrapper else self.codegen()
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]                                                              ^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/_inductor/graph.py", line 2260, in codegen
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     self._update_scheduler()
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/vllm/env_override.py", line 363, in _update_scheduler_patched
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     self.scheduler = Scheduler(self.operations)
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]                      ^^^^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/_inductor/scheduler.py", line 2250, in __init__
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     self._init(nodes)
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/_inductor/scheduler.py", line 2344, in _init
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     self.create_combo_kernel_nodes(num_ck_nodes=None)
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/_inductor/scheduler.py", line 3645, in create_combo_kernel_nodes
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     if not self.speedup_by_combo_kernel(node_list):
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/_inductor/scheduler.py", line 5517, in speedup_by_combo_kernel
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     ms, path = self.benchmark_fused_nodes(node_list)
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/_inductor/scheduler.py", line 3047, in benchmark_fused_nodes
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     return backend.benchmark_fused_nodes(nodes)
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/_inductor/codegen/cuda_combined_scheduling.py", line 141, in benchmark_fused_nodes
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     return self._triton_scheduling.benchmark_fused_nodes(nodes)
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/_inductor/codegen/triton.py", line 4778, in benchmark_fused_nodes
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     src_code = self.generate_kernel_code_from_nodes(nodes, benchmark_kernel=True)
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/_inductor/codegen/simd.py", line 2576, in generate_kernel_code_from_nodes
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     src_code = kernel.codegen_kernel()
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]                ^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/_inductor/codegen/triton.py", line 4173, in codegen_kernel
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     **self.inductor_meta_common(),
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]       ^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/_inductor/codegen/triton.py", line 3992, in inductor_meta_common
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     "backend_hash": torch.utils._triton.triton_hash_with_backend(),
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/utils/_triton.py", line 175, in triton_hash_with_backend
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     backend = triton_backend()
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]               ^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/torch/utils/_triton.py", line 167, in triton_backend
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     target = driver.active.get_current_target()
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]              ^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/triton/runtime/driver.py", line 28, in active
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     self._active = self.default
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]                    ^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/triton/runtime/driver.py", line 22, in default
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     self._default = _create_driver()
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]                     ^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/triton/runtime/driver.py", line 10, in _create_driver
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     return active_drivers[0]()
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]            ^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/triton/backends/nvidia/driver.py", line 719, in __init__
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     self.utils = CudaUtils()  # TODO: make static
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]                  ^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/triton/backends/nvidia/driver.py", line 63, in __init__
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     mod = compile_module_from_src(
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]           ^^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/triton/runtime/build.py", line 89, in compile_module_from_src
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     so = _build(name, src_path, tmpdir, library_dirs or [], include_dirs or [], libraries or [], ccflags or [])
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/home/coder/vllm-benchmarking/.venv/lib64/python3.11/site-packages/triton/runtime/build.py", line 51, in _build
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     subprocess.check_call(cc_cmd, stdout=subprocess.DEVNULL)
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]   File "/usr/lib64/python3.11/subprocess.py", line 413, in check_call
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822]     raise CalledProcessError(retcode, cmd)
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822] torch._inductor.exc.InductorError: CalledProcessError: Command '['/usr/bin/gcc', '/tmp/tmpqxw0ckl9/cuda_utils.c', '-O3', '-shared', '-fPIC', '-Wno-psabi', '-o', '/tmp/tmpqxw0ckl9/cuda_utils.cpython-311-x86_64-linux-gnu.so', '-lcuda', '-L/home/coder/vllm-benchmarking/.venv/lib/python3.11/site-packages/triton/backends/nvidia/lib', '-L/lib64', '-L/lib', '-I/home/coder/vllm-benchmarking/.venv/lib/python3.11/site-packages/triton/backends/nvidia/include', '-I/tmp/tmpqxw0ckl9', '-I/usr/include/python3.11']' returned non-zero exit status 1.
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822] 
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822] Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo"
�[0;36m(Worker_TP3 pid=340106)�[0;0m ERROR 12-10 23:42:18 [multiproc_executor.py:822] 

error.log

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

No one assigned

    Labels

    usageHow to use vllm

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions