Releases: pythonlessons/mltu
Releases · pythonlessons/mltu
1.2.5
[1.2.5] - 2024-05-04
Added
- Added exception in
mltu.dataProvider.DataProviderto raise ValueError when dataset is not iterable - Added custom training code for YoloV8 object detector:
Tutorials\11_Yolov8\train_yolov8.py - Added custom trained inference code for YoloV8 object detector:
Tutorials\11_Yolov8\test_yolov8.py
Changed
- Fixed
RandomElasticTransforminmltu.augmentorsto handle elastic transformation not to exceed image boundaries - Modified
YoloPreprocessorinmltu.torch.yolo.preprocessorsto output dictionary with np.arrays istead of lists
1.2.4
[1.2.4] - 2024-03-21
Added
- Added
RandomElasticTransformtomltu.augmentorsto work withImageobjects - Added
xyxy_abstomltu.annotations.detections.Detectionobject to return absolute bounding boxes
Changes
- Changed
ImageShowCV2transformer inmltu.transformersto display images when running with multiple threads
1.2.3
[1.2.3] - 2024-03-17
Added
- Added Tutorial how to run YOLOv8 pretrained Object Detection model
Tutorials.11_Yolov8.README.md
1.2.2
[1.2.2] - 2024-03-15
Changed
- Bug fixed with
loss_infolocal variable inmltu.torch.model.Modelobject
Added
- Added
RandomColorModeandRandomZoomintomltu.augmentors
1.2.1
[1.2.1] - 2024-03-12
Changed
- Fixed many minor bugs
Added
- Added
mltu.transformers.ImageNormalizerto normalize and transpose images - Added
mltu.torch.yolo.annotation.VOCAnnotationReaderto read VOC annotation files - Added
mltu.torch.yolo.preprocessors.YoloPreprocessorto preprocess images and annotations for YoloV8 detection model
1.2.0
[1.2.0] - 2024-03-05
Changed
- Creating code to work with Ultralytics YoloV8 Detection model (training and inference)
- Updated previous tutorials to work with the latest mltu changes
- Updated
mltu.augmentors.RandomRotateto work withDetectionsobjects - Changed to use
importlibto importlibrosainmltu.preprocessorsto avoid import errors - Changed
mltu.torch.model.Modelobject to provide more flexibility in training and validation - Improved
mltu.torch.callbacksto provide more flexibility in training and validation
Added
- Added
mltu.torch.detectionmodule, that containsDetectionsandDetectionobjects, to handle detection annotations - Added
RandomDropBlockandRandomDropBlockaugmentors intomltu.augmentorsto work withDetectionsobjects - Added
ModelEMAintomltu.torch.modelto work with EMA (Exponential Moving Average) model - Added
FpsWrapperintomltu.inferenceModelto automatically calculate FPS (Frames Per Second) when using inference model - Added
mltu.torch.yolo.detector.BaseDetectoras a base class for preprocessing and postprocessing detection models - Added
mltu.torch.yolo.detector.onnx_detector.Detectoras a class to handle YoloV8 onnx model detection inference - Added
mltu.torch.yolo.detector.torch_detector.Detectoras a class to handle YoloV8 torch model detection inference - Added
mltu.torch.yolo.loss.v8DetectionLossas a class to handle YoloV8 detection loss in training - Added
mltu.torch.yolo.metrics.YoloMetricsas a class to handle YoloV8 detection metrics in training and validation - Added
mltu.torch.yolo.optimizermodule, that containsAccumulativeOptimizerobject andbuild_optimizerfunction, to handle YoloV8 detection optimizer in training - Added YoloV8 Detection tutorial in
Tutorials.11_yolov8that shows how to do basic inference with torch and exported onnx models
1.1.8
[1.1.8] - 2024-01-02
Changed
- Fixed
setup.pyto includemltu.torchandmltu.tensorflowpackages and other packages that are required formltuto work properly
1.1.7
[1.1.7] - 2022-10-30
Changed
- Fixed bug in
mltu.torch.dataProvider.SequenceHandler, to handlelen sequence < queue_sizecase
1.1.6
Fixing dependency with librosa library
1.1.5
[1.1.5] - 2022-10-17
Changed
- Fixed dependencies with
librosalibrary