A comprehensive backtesting library for trading strategies written in Elixir.
Important
This library is under active, pre 1.0 development. The APIs are not to be considered stable. Calculations may not be correct. See the LICENSE but use at your own risk.
ExPostFacto empowers traders and developers to test their trading strategies against historical data with confidence. Built with Elixir's concurrency and fault-tolerance in mind, it provides enterprise-grade backtesting capabilities with an intuitive API.
- π― Easy to Use: Simple API that gets you backtesting in minutes
- π Professional Grade: Comprehensive statistics and performance metrics
- π§ Flexible: Support for simple functions or advanced strategy behaviours
- β‘ Fast: Concurrent optimization and streaming for large datasets
- π§Ή Robust: Built-in data validation, cleaning, and error handling
- π Complete: 20+ technical indicators and optimization algorithms
- CSV files - Load data directly from CSV files
- JSON - Parse JSON market data
- Lists of maps - Use runtime data structures
- Streaming - Handle large datasets efficiently
- Comprehensive OHLCV validation with detailed error messages
- Automatic data cleaning - Remove invalid points, sort by timestamp
- Enhanced timestamp handling - Support for multiple date formats
- Duplicate detection and removal
- Simple MFA functions for quick prototypes
- Advanced Strategy behaviour with state management
- Built-in helper functions -
buy(),sell(),position(), etc. - 20+ technical indicators - SMA, EMA, RSI, MACD, Bollinger Bands, and more
- Parameter optimization with grid search, random search, walk-forward analysis
- Concurrent processing for large parameter spaces
- Memory-efficient streaming for massive datasets
- Performance profiling and bottleneck identification
- 30+ performance metrics - Sharpe ratio, CAGR, max drawdown, profit factor
- Trade analysis - Win rate, best/worst trades, trade duration
- Risk metrics - Drawdown analysis, volatility measures
- Visual data - Heatmaps for parameter optimization
See ENHANCED_DATA_HANDLING_EXAMPLES.md for detailed usage examples.
ExPostFacto works seamlessly with LiveBook for interactive backtesting and analysis:
# In LiveBook, install dependencies:
Mix.install([
{:ex_post_facto, "~> 0.2.0"},
{:kino, "~> 0.12.0"},
{:kino_vega_lite, "~> 0.1.0"}
])
# Run interactive backtests with rich visualizations
{:ok, result} = ExPostFacto.backtest(data, {MyStrategy, :call, []})See LiveBook Integration Guide for comprehensive examples, interactive forms, and visualization techniques.
Add ExPostFacto to your mix.exs:
def deps do
[
{:ex_post_facto, "~> 0.2.0"}
]
end# Sample market data
market_data = [
%{open: 100.0, high: 105.0, low: 98.0, close: 102.0, timestamp: "2023-01-01"},
%{open: 102.0, high: 108.0, low: 101.0, close: 106.0, timestamp: "2023-01-02"},
%{open: 106.0, high: 110.0, low: 104.0, close: 108.0, timestamp: "2023-01-03"}
]
# Simple buy-and-hold strategy
{:ok, result} = ExPostFacto.backtest(
market_data,
{ExPostFacto.ExampleStrategies.SimpleBuyHold, []},
starting_balance: 10_000.0
)
# View results
IO.puts("Total return: $#{result.result.total_profit_and_loss}")
IO.puts("Win rate: #{result.result.win_rate}%")# ExPostFacto automatically handles CSV files
{:ok, result} = ExPostFacto.backtest(
"path/to/market_data.csv",
{MyStrategy, :call, []},
starting_balance: 100_000.0
)defmodule SimpleThresholdStrategy do
def call(data, _result) do
if data.close > 105.0, do: :buy, else: :sell
end
end
{:ok, result} = ExPostFacto.backtest(
market_data,
{SimpleThresholdStrategy, :call, []},
starting_balance: 10_000.0
)defmodule MovingAverageStrategy do
use ExPostFacto.Strategy
def init(opts) do
{:ok, %{
fast_period: Keyword.get(opts, :fast_period, 10),
slow_period: Keyword.get(opts, :slow_period, 20),
price_history: []
}}
end
def next(state) do
current_price = data().close
price_history = [current_price | state.price_history]
if length(price_history) >= state.slow_period do
fast_sma = indicator(:sma, price_history, state.fast_period)
slow_sma = indicator(:sma, price_history, state.slow_period)
if List.first(fast_sma) > List.first(slow_sma) do
buy()
else
sell()
end
end
{:ok, %{state | price_history: price_history}}
end
end
# Run with custom parameters
{:ok, result} = ExPostFacto.backtest(
market_data,
{MovingAverageStrategy, [fast_period: 5, slow_period: 15]},
starting_balance: 10_000.0
)ExPostFacto includes 20+ built-in technical indicators:
# Available indicators
prices = [100, 101, 102, 103, 104, 105]
sma_20 = indicator(:sma, prices, 20)
ema_12 = indicator(:ema, prices, 12)
rsi_14 = indicator(:rsi, prices, 14)
{macd, signal, histogram} = indicator(:macd, prices)
{bb_upper, bb_middle, bb_lower} = indicator(:bollinger_bands, prices)
# Crossover detection
if crossover?(fast_sma, slow_sma) do
buy()
endFind optimal parameters automatically:
# Grid search optimization
{:ok, result} = ExPostFacto.optimize(
market_data,
MovingAverageStrategy,
[fast_period: 5..15, slow_period: 20..30],
maximize: :sharpe_ratio
)
IO.puts("Best parameters: #{inspect(result.best_params)}")
IO.puts("Best Sharpe ratio: #{result.best_score}")
# Walk-forward analysis for robust testing
{:ok, result} = ExPostFacto.optimize(
market_data,
MovingAverageStrategy,
[fast_period: 5..15, slow_period: 20..30],
method: :walk_forward,
training_window: 252, # 1 year
validation_window: 63 # 3 months
)ExPostFacto ensures your data is clean and valid:
# Validate data
case ExPostFacto.validate_data(market_data) do
:ok -> IO.puts("Data is valid!")
{:error, reason} -> IO.puts("Validation error: #{reason}")
end
# Clean messy data automatically
{:ok, clean_data} = ExPostFacto.clean_data(dirty_data)
# Enhanced error handling
{:ok, result} = ExPostFacto.backtest(
market_data,
strategy,
enhanced_validation: true,
debug: true
)ExPostFacto includes several example strategies:
# Moving Average Crossover
{:ok, result} = ExPostFacto.backtest(
data,
{ExPostFacto.ExampleStrategies.SmaStrategy, [fast_period: 10, slow_period: 20]}
)
# RSI Mean Reversion
{:ok, result} = ExPostFacto.backtest(
data,
{ExPostFacto.ExampleStrategies.RSIMeanReversionStrategy, [
rsi_period: 14,
oversold_threshold: 30,
overbought_threshold: 70
]}
)
# Bollinger Band Strategy
{:ok, result} = ExPostFacto.backtest(
data,
{ExPostFacto.ExampleStrategies.BollingerBandStrategy, [period: 20, std_dev: 2.0]}
)
# Breakout Strategy
{:ok, result} = ExPostFacto.backtest(
data,
{ExPostFacto.ExampleStrategies.BreakoutStrategy, [
lookback_period: 20,
breakout_threshold: 0.02
]}
)- Getting Started Guide - Step-by-step introduction
- Interactive Tutorial - Livebook tutorial with examples
- Strategy API Guide - Comprehensive strategy development
- Technical Indicators - All available indicators and usage
- Best Practices - Guidelines for effective strategies
- Migration Guide - Moving from other libraries
- Enhanced Data Handling - Data formats and validation
- Error Handling - Debugging and validation
- Optimization Guide - Parameter optimization techniques
- Comprehensive Metrics - Performance analysis
# Handle massive datasets efficiently
{:ok, result} = ExPostFacto.backtest_stream(
"very_large_dataset.csv",
{MyStrategy, []},
chunk_size: 1000,
memory_limit_mb: 100
)# Leverage all CPU cores for optimization
{:ok, result} = ExPostFacto.optimize(
data,
MyStrategy,
parameter_ranges,
method: :random_search,
samples: 1000,
max_concurrent: System.schedulers_online()
)# Generate parameter heatmaps
{:ok, optimization_result} = ExPostFacto.optimize(data, MyStrategy, param_ranges)
{:ok, heatmap} = ExPostFacto.heatmap(optimization_result, :param1, :param2)
# Use heatmap data for visualization
IO.inspect(heatmap.scores) # 2D array of performance scores| Feature | ExPostFacto | backtesting.py | Backtrader | QuantConnect |
|---|---|---|---|---|
| Language | Elixir | Python | Python | C#/Python |
| Concurrency | β Native | β | β | β |
| Memory Efficiency | β Streaming | β | β | β |
| Data Validation | β Built-in | β | β | β |
| Walk-Forward | β | β | β | β |
| Easy Setup | β | β | β | β |
We welcome contributions! Please see our contributing guidelines and check out the open issues.
ExPostFacto is released under the MIT License. See LICENSE for details.
Inspired by Python's backtesting.py and other excellent backtesting libraries. Built with the power and elegance of Elixir.
Ready to backtest your trading strategies? Get started now! π