Copyright (C) 2025, Shyamal Suhana Chandra
DDAF is a comprehensive C/C++ library implementing adaptive activation functions for deep neural networks. It supports four types of activation functions:
- Data-Driven: Adapts based on input data statistics
- Dynamic: Parameters evolve over time during training
- Online: Real-time adaptation to streaming data
- Attention-Based: Uses attention mechanisms to weight activations
- Convolutional Neural Networks (CNNs)
- Recurrent Neural Networks (RNNs)
- Long Short-Term Memory (LSTMs)
- Gated Recurrent Units (GRUs)
- Transformers
- Hierarchical Transformers
- Big Bird
- Mixture of Experts (MoE)
- CMake 3.12 or higher
- C11 compatible compiler
- C++17 compatible compiler
mkdir build
cd build
cmake ..
makeThis will create:
- Static library:
libddaf_static.a - Shared library:
libddaf_shared.so(or.dylibon macOS) - Example executables in
examples/
Include the header file:
#include "ddaf.h"Basic example:
// Create context
ddaf_context_t* ctx = ddaf_create_context(
DDAF_TYPE_DATA_DRIVEN,
DDAF_ARCH_CNN,
0
);
// Initialize
ddaf_cnn_init(ctx, 64, 32, 32);
// Forward pass
ddaf_forward(ctx, input, output, size);
// Backward pass
ddaf_backward(ctx, grad_output, grad_input, size);
// Cleanup
ddaf_destroy_context(ctx);See examples/ directory for more complete examples.
See docs/ directory for:
paper.tex: Research paperpresentation.tex: Beamer presentationreference_manual.tex: Complete API reference
🌐 Live Website: View on GitHub Pages
The website is automatically deployed using GitHub Actions. See GITHUB_PAGES_SETUP.md for setup instructions.
- Enable GitHub Pages in repository settings (Source: GitHub Actions)
- Push to
mainbranch - deployment happens automatically - Site will be live at
https://Sapana-Micro-Software.github.io/ddaf/
Copyright (C) 2025, Shyamal Suhana Chandra
All rights reserved.