Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion .github/workflows/CI.yml
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,6 @@ jobs:
fail-fast: false
matrix:
version:
- '1.6'
- '1.9'
os:
- ubuntu-latest
Expand Down
12 changes: 6 additions & 6 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "L2O"
uuid = "e1d8bfa7-c465-446a-84b9-451470f6e76c"
authors = ["andrewrosemberg <[email protected]> and contributors"]
version = "1.2.0-DEV"
version = "1.0.0"

[deps]
Arrow = "69666777-d1a9-59fb-9406-91d4454c9d45"
Expand All @@ -21,12 +21,12 @@ UUIDs = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"

[compat]
Arrow = "2"
CSV = "0.10"
JuMP = "1"
ParametricOptInterface = "0.7"
Arrow = "^2"
CSV = "^0.10"
JuMP = "^1"
ParametricOptInterface = "^0.8"
Zygote = "^0.6.68"
julia = "1.6"
julia = "^1.9"

[extras]
CUDA_Runtime_jll = "76a88914-d11a-5bdc-97e0-2f5a05c973a2"
Expand Down
64 changes: 47 additions & 17 deletions src/FullyConnected.jl
Original file line number Diff line number Diff line change
Expand Up @@ -66,14 +66,20 @@ end
# @forward((ConvexRegressor, :model), MLJFlux.Regressor)

# Define a container to hold any optimiser specific parameters (if any):
struct ConvexRule <: Flux.Optimise.AbstractOptimiser
rule::Flux.Optimise.AbstractOptimiser
struct ConvexRule <: Optimisers.AbstractRule
rule::Optimisers.AbstractRule
tol::Real
end
function ConvexRule(rule::Flux.Optimise.AbstractOptimiser; tol=1e-6)
function ConvexRule(rule::Optimisers.AbstractRule; tol=1e-6)
return ConvexRule(rule, tol)
end

Optimisers.init(o::ConvexRule, x::AbstractArray) = Optimisers.init(o.rule, x)

function Optimisers.apply!(o::ConvexRule, mvel, x::AbstractArray{T}, dx) where T
return Optimisers.apply!(o.rule, mvel, x, dx)
end

"""
function make_convex!(chain::PairwiseFusion; tol = 1e-6)

Expand Down Expand Up @@ -102,24 +108,48 @@ function make_convex!(model::Chain; tol=1e-6)
end
end

function MLJFlux.train!(
model::MLJFlux.MLJFluxDeterministic, penalty, chain, optimiser::ConvexRule, X, y
)
function MLJFlux.train(
model,
chain,
optimiser::ConvexRule,
optimiser_state,
epochs,
verbosity,
X,
y,
)

loss = model.loss

# intitialize and start progress meter:
meter = MLJFlux.Progress(epochs + 1, dt=0, desc="Optimising neural net:",
barglyphs=MLJFlux.BarGlyphs("[=> ]"), barlen=25, color=:yellow)
verbosity != 1 || MLJFlux.next!(meter)

# initiate history:
n_batches = length(y)
training_loss = zero(Float32)
for i in 1:n_batches
parameters = Flux.params(chain)
gs = Flux.gradient(parameters) do
yhat = chain(X[i])
batch_loss = loss(yhat, y[i]) + penalty(parameters) / n_batches
training_loss += batch_loss
return batch_loss
end
Flux.update!(optimiser.rule, parameters, gs)

losses = (loss(chain(X[i]), y[i]) for i in 1:n_batches)
history = [mean(losses),]

for i in 1:epochs
chain, optimiser_state, current_loss = MLJFlux.train_epoch(
model,
chain,
optimiser,
optimiser_state,
X,
y,
)
make_convex!(chain; tol=optimiser.tol)
verbosity < 2 ||
@info "Loss is $(round(current_loss; sigdigits=4))"
verbosity != 1 || next!(meter)
push!(history, current_loss)
end
return training_loss / n_batches

return chain, optimiser_state, history

end

function train!(model, loss, opt_state, X, Y; _batchsize=32, shuffle=true)
Expand Down
47 changes: 36 additions & 11 deletions src/datasetgen.jl
Original file line number Diff line number Diff line change
Expand Up @@ -105,6 +105,14 @@ end

abstract type AbstractProblemIterator end

abstract type AbstractParameterType end

abstract type POIParamaterType <: AbstractParameterType end

abstract type JuMPNLPParameterType <: AbstractParameterType end

abstract type JuMPParameterType <: AbstractParameterType end

"""
ProblemIterator(ids::Vector{UUID}, pairs::Dict{VariableRef, Vector{Real}})

Expand All @@ -115,24 +123,30 @@ struct ProblemIterator{T<:Real} <: AbstractProblemIterator
ids::Vector{UUID}
pairs::Dict{VariableRef,Vector{T}}
early_stop::Function
param_type::Type{<:AbstractParameterType}
pre_solve_hook::Function
function ProblemIterator(
ids::Vector{UUID},
pairs::Dict{VariableRef,Vector{T}},
early_stop::Function=(args...) -> false,
param_type::Type{<:AbstractParameterType}=POIParamaterType,
pre_solve_hook::Function=(args...) -> nothing
) where {T<:Real}
model = JuMP.owner_model(first(keys(pairs)))
for (p, val) in pairs
@assert length(ids) == length(val)
end
return new{T}(model, ids, pairs, early_stop)
return new{T}(model, ids, pairs, early_stop, param_type, pre_solve_hook)
end
end

function ProblemIterator(
pairs::Dict{VariableRef,Vector{T}}; early_stop::Function=(args...) -> false
) where {T<:Real}
pairs::Dict{VariableRef,Vector{T}}; early_stop::Function=(args...) -> false,
pre_solve_hook::Function=(args...) -> nothing,
param_type::Type{<:AbstractParameterType}=POIParamaterType,
ids = [uuid1() for _ in 1:length(first(values(pairs)))]
return ProblemIterator(ids, pairs, early_stop)
) where {T<:Real}
return ProblemIterator(ids, pairs, early_stop, param_type, pre_solve_hook)
end

"""
Expand Down Expand Up @@ -174,7 +188,8 @@ end

function load(model_file::AbstractString, input_file::AbstractString, ::Type{T};
batch_size::Union{Nothing, Integer}=nothing,
ignore_ids::Vector{UUID}=UUID[]
ignore_ids::Vector{UUID}=UUID[],
param_type::Type{<:AbstractParameterType}=JuMPParameterType
) where {T<:FileType}
# Load full set
df = load(input_file, T)
Expand All @@ -191,31 +206,40 @@ function load(model_file::AbstractString, input_file::AbstractString, ::Type{T};
# No batch
if isnothing(batch_size)
pairs = _dataframe_to_dict(df, model_file)
return ProblemIterator(ids, pairs)
return ProblemIterator(pairs; ids=ids, param_type=param_type)
end
# Batch
num_batches = ceil(Int, length(ids) / batch_size)
idx_range = (i) -> (i-1)*batch_size+1:min(i*batch_size, length(ids))
return (i) -> ProblemIterator(ids[idx_range(i)], _dataframe_to_dict(df[idx_range(i), :], model_file)), num_batches
return (i) -> ProblemIterator(_dataframe_to_dict(df[idx_range(i), :], model_file);
ids=ids[idx_range(i)], param_type=param_type), num_batches
end

"""
update_model!(model::JuMP.Model, p::VariableRef, val::Real)

Update the value of a parameter in a JuMP model.
"""
function update_model!(model::JuMP.Model, p::VariableRef, val)
function update_model!(::Type{POIParamaterType}, model::JuMP.Model, p::VariableRef, val)
return MOI.set(model, POI.ParameterValue(), p, val)
end

function update_model!(::Type{JuMPNLPParameterType}, model::JuMP.Model, p::VariableRef, val)
return set_parameter_value(p, val)
end

function update_model!(::Type{JuMPParameterType}, model::JuMP.Model, p::VariableRef, val)
return fix(p, val)
end

"""
update_model!(model::JuMP.Model, pairs::Dict, idx::Integer)

Update the values of parameters in a JuMP model.
"""
function update_model!(model::JuMP.Model, pairs::Dict, idx::Integer)
function update_model!(model::JuMP.Model, pairs::Dict, idx::Integer, param_type::Type{<:AbstractParameterType})
for (p, val) in pairs
update_model!(model, p, val[idx])
update_model!(param_type, model, p, val[idx])
end
end

Expand All @@ -228,7 +252,8 @@ function solve_and_record(
problem_iterator::ProblemIterator, recorder::Recorder, idx::Integer
)
model = problem_iterator.model
update_model!(model, problem_iterator.pairs, idx)
problem_iterator.pre_solve_hook(model)
update_model!(model, problem_iterator.pairs, idx, problem_iterator.param_type)
optimize!(model)
status = recorder.filterfn(model)
early_stop_bool = problem_iterator.early_stop(model, status, recorder)
Expand Down
2 changes: 1 addition & 1 deletion src/samplers.jl
Original file line number Diff line number Diff line change
Expand Up @@ -119,7 +119,7 @@ end
Load the parameters from a JuMP model.
"""
function load_parameters(model::JuMP.Model)
cons = constraint_object.(all_constraints(model, VariableRef, MOI.Parameter{Float64}))
cons = constraint_object.([all_constraints(model, VariableRef, MOI.Parameter{Float64}); all_constraints(model, VariableRef, MOI.EqualTo{Float64})])
parameters = [cons[i].func for i in 1:length(cons)]
vals = [cons[i].set.value for i in 1:length(cons)]
return parameters, vals
Expand Down
65 changes: 64 additions & 1 deletion test/datasetgen.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@
Test dataset generation for different filetypes
"""
function test_problem_iterator(path::AbstractString)
@testset "Dataset Generation Type: $filetype" for filetype in [CSVFile, ArrowFile]
@testset "Dataset Generation (POI) Type: $filetype" for filetype in [CSVFile, ArrowFile]
# The problem to iterate over
model = JuMP.Model(() -> POI.Optimizer(HiGHS.Optimizer()))
@variable(model, x)
Expand Down Expand Up @@ -55,6 +55,17 @@ function test_problem_iterator(path::AbstractString)
@test num_p * successfull_solves == 1
end

@testset "pre_solve_hook" begin
file_dual_output = joinpath(path, "test_$(string(uuid1()))_output") # file path
recorder_dual = Recorder{filetype}(file_dual_output; dual_variables=[cons])
sum_p = 0
problem_iterator = ProblemIterator(
Dict(p => collect(1.0:num_p)); pre_solve_hook=(args...) -> sum_p += 1
)
successfull_solves = solve_batch(problem_iterator, recorder_dual)
@test sum_p == num_p
end

@testset "solve_batch" begin
successfull_solves = solve_batch(problem_iterator, recorder)

Expand Down Expand Up @@ -96,6 +107,58 @@ function test_problem_iterator(path::AbstractString)
end
end
end
@testset "Dataset Generation JuMP" begin
model = JuMP.Model(HiGHS.Optimizer)
@variable(model, x)
p = @variable(model, _p)
@constraint(model, cons, x + _p >= 3)
@objective(model, Min, 2x)
num_p = 10
batch_id = string(uuid1())
problem_iterator = ProblemIterator(Dict(p => collect(1.0:num_p)); param_type=L2O.JuMPParameterType)
file_output = joinpath(path, "test_$(batch_id)_output") # file path
recorder = Recorder{ArrowFile}(
file_output; primal_variables=[x], dual_variables=[cons]
)
successfull_solves = solve_batch(problem_iterator, recorder)
iter_files = readdir(joinpath(path))
iter_files = filter(x -> occursin(string(ArrowFile), x), iter_files)
file_outs = [
joinpath(path, file) for
file in iter_files if occursin("$(batch_id)_output", file)
]
# test output file
df = Arrow.Table(file_outs)
@test length(df) == 8
@test length(df[1]) == num_p * successfull_solves
rm.(file_outs)
end
@testset "Dataset Generation JuMPNLP" begin
model = JuMP.Model(Ipopt.Optimizer)
@variable(model, x)
p = @variable(model, _p in MOI.Parameter(1.0))
@constraint(model, cons, x + _p >= 3)
@objective(model, Min, 2x)
num_p = 10
batch_id = string(uuid1())
problem_iterator = ProblemIterator(Dict(p => collect(1.0:num_p)); param_type=L2O.JuMPNLPParameterType)
file_output = joinpath(path, "test_$(batch_id)_output") # file path
recorder = Recorder{ArrowFile}(
file_output; primal_variables=[x], dual_variables=[cons]
)
successfull_solves = solve_batch(problem_iterator, recorder)
iter_files = readdir(joinpath(path))
iter_files = filter(x -> occursin(string(ArrowFile), x), iter_files)
file_outs = [
joinpath(path, file) for
file in iter_files if occursin("$(batch_id)_output", file)
]
# test output file
df = Arrow.Table(file_outs)
@test length(df) == 8
@test length(df[1]) == num_p * successfull_solves
rm.(file_outs)
end
end

function test_load(model_file::AbstractString, input_file::AbstractString, ::Type{T}, ids::Vector{UUID};
Expand Down
2 changes: 1 addition & 1 deletion test/test_flux_forecaster.jl
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ function test_flux_forecaster(file_in::AbstractString, file_out::AbstractString)
rng=123,
epochs=20,
optimiser=ConvexRule(
Flux.Optimise.Adam(0.001, (0.9, 0.999), 1.0e-8, IdDict{Any,Any}())
Optimisers.Adam()
),
)

Expand Down