Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 11 additions & 11 deletions theories/WildCat/DisplayedEquiv.v
Original file line number Diff line number Diff line change
Expand Up @@ -338,24 +338,24 @@ Defined.
(** Some lemmas for moving equivalences around. Naming based on EquivGroupoids.v. *)

Definition dcate_moveR_eM {A} {D : A -> Type} `{DHasEquivs A D}
{a b c : A} {e : b $<~> a} {f : b $<~> c} {g : a $<~> c}
{p : cate_fun g $== f $o e^-1$} {a' : D a} {b' : D b} {c' : D c}
(e' : DCatEquiv e b' a') (f' : DCatEquiv f b' c') (g' : DCatEquiv g a' c')
(p' : DGpdHom p (dcate_fun g') (dcate_fun f' $o' e'^-1$'))
: DGpdHom (cate_moveR_eM e f g p) (dcate_fun g' $o' e') (dcate_fun f').
{a b c : A} {e : b $<~> a} {f : a $-> c} {g : b $-> c}
{p : f $== g $o e^-1$} {a' : D a} {b' : D b} {c' : D c}
(e' : DCatEquiv e b' a') (f' : DHom f a' c') (g' : DHom g b' c')
(p' : DGpdHom p f' (g' $o' e'^-1$'))
: DGpdHom (cate_moveR_eM e f g p) (f' $o' e') g'.
Proof.
apply (dcate_epic_equiv e'^-1$').
exact (dcompose_hh_V _ _ $@' p').
Defined.

Definition dcate_moveR_Ve {A} {D : A -> Type} `{DHasEquivs A D}
{a b c : A} {e : b $<~> a} {f : b $<~> c} {g : c $<~> a}
{p : cate_fun e $== g $o f} {a' : D a} {b' : D b} {c' : D c}
(e' : DCatEquiv e b' a') (f' : DCatEquiv f b' c') (g' : DCatEquiv g c' a')
(p' : DGpdHom p (dcate_fun e') (dcate_fun g' $o' f'))
: DGpdHom (cate_moveR_Ve e f g p) (dcate_fun g'^-1$' $o' e') (dcate_fun f').
{a b c : A} {e : b $<~> c} {f : a $-> c} {g : a $-> b}
{p : f $== e $o g} {a' : D a} {b' : D b} {c' : D c}
(e' : DCatEquiv e b' c') (f' : DHom f a' c') (g' : DHom g a' b')
(p' : DGpdHom p f' (dcate_fun e' $o' g'))
: DGpdHom (cate_moveR_Ve e f g p) (dcate_fun e'^-1$' $o' f') g'.
Proof.
apply (dcate_monic_equiv g').
apply (dcate_monic_equiv e').
exact (dcompose_h_Vh _ _ $@' p').
Defined.

Expand Down
74 changes: 66 additions & 8 deletions theories/WildCat/Equiv.v
Original file line number Diff line number Diff line change
Expand Up @@ -282,21 +282,79 @@ Proof.
exact (p $@R _).
Defined.

(** Some lemmas for moving equivalences around. Naming based on EquivGroupoids.v. More could be added. *)
(** ** Movement Lemmas *)

Definition cate_moveR_eM {A} `{HasEquivs A} {a b c : A} (e : b $<~> a) (f : b $<~> c) (g : a $<~> c)
(p : cate_fun g $== f $o e^-1$)
: g $o e $== f.
(** These lemmas can be used to move equivalences around in an equation. *)

Definition cate_moveL_eM {A} `{HasEquivs A} {a b c : A}
(e : a $<~> b) (f : a $-> c) (g : b $-> c)
(p : f $o e^-1$ $== g)
: f $== g $o e.
Proof.
apply (cate_epic_equiv e^-1$).
exact (p $@ (compose_hh_V _ _)^$).
Defined.

Definition cate_moveR_eM {A} `{HasEquivs A} {a b c : A}
(e : b $<~> a) (f : a $-> c) (g : b $-> c)
(p : f $== g $o e^-1$)
: f $o e $== g.
Proof.
apply (cate_epic_equiv e^-1$).
exact (compose_hh_V _ _ $@ p).
Defined.

Definition cate_moveR_Ve {A} `{HasEquivs A} {a b c : A} (e : b $<~> a) (f : b $<~> c) (g : c $<~> a)
(p : cate_fun e $== g $o f)
: g^-1$ $o e $== f.
Definition cate_moveL_Me {A} `{HasEquivs A} {a b c : A}
(e : b $<~> c) (f : a $-> c) (g : a $-> b)
(p : e^-1$ $o f $== g)
: f $== e $o g.
Proof.
apply (cate_monic_equiv e^-1$).
exact (p $@ (compose_V_hh _ _)^$).
Defined.

Definition cate_moveR_Me {A} `{HasEquivs A} {a b c : A}
(e : c $<~> b) (f : a $-> c) (g : a $-> b)
(p : f $== e^-1$ $o g)
: e $o f $== g.
Proof.
apply (cate_monic_equiv e^-1$).
exact (compose_V_hh _ _ $@ p).
Defined.

Definition cate_moveL_eV {A} `{HasEquivs A} {a b c : A}
(e : a $<~> b) (f : b $-> c) (g : a $-> c)
(p : f $o e $== g)
: f $== g $o e^-1$.
Proof.
apply (cate_monic_equiv g).
apply (cate_epic_equiv e).
exact (p $@ (compose_hV_h _ _)^$).
Defined.

Definition cate_moveR_eV {A} `{HasEquivs A} {a b c : A}
(e : b $<~> a) (f : b $-> c) (g : a $-> c)
(p : f $== g $o e)
: f $o e^-1$ $== g.
Proof.
apply (cate_epic_equiv e).
exact (compose_hV_h _ _ $@ p).
Defined.

Definition cate_moveL_Ve {A} `{HasEquivs A} {a b c : A}
(e : b $<~> c) (f : a $-> b) (g : a $-> c)
(p : e $o f $== g)
: f $== e^-1$ $o g.
Proof.
apply (cate_monic_equiv e).
exact (p $@ (compose_h_Vh _ _)^$).
Defined.

Definition cate_moveR_Ve {A} `{HasEquivs A} {a b c : A}
(e : b $<~> c) (f : a $-> c) (g : a $-> b)
(p : f $== e $o g)
: e^-1$ $o f $== g.
Proof.
apply (cate_monic_equiv e).
exact (compose_h_Vh _ _ $@ p).
Defined.

Expand Down