- Installation
- Quick Start
- Core Components
- Web UI (Gradio)
- Command Line Interface
- Visualization
- Usage Examples
- Features
pip install doctragit clone https://github.com/AdemBoukhris457/Doctra.git
cd Doctra
pip install .Doctra requires Poppler for PDF processing. Install it based on your operating system:
sudo apt install poppler-utilsbrew install popplerDownload and install from Poppler for Windows or use conda:
conda install -c conda-forge poppler!sudo apt install poppler-utilsfrom doctra.parsers.structured_pdf_parser import StructuredPDFParser
# Initialize the parser
parser = StructuredPDFParser()
# Parse a PDF document
parser.parse("path/to/your/document.pdf")The StructuredPDFParser is a comprehensive PDF parser that extracts all types of content from PDF documents. It processes PDFs through layout detection, extracts text using OCR, saves images for visual elements, and optionally converts charts/tables to structured data using Vision Language Models (VLM).
- Layout Detection: Uses PaddleOCR for accurate document layout analysis
- OCR Processing: Supports both PyTesseract (default) and PaddleOCR PP-OCRv5_server for text extraction
- Visual Element Extraction: Saves figures, charts, and tables as images
- VLM Integration: Optional conversion of visual elements to structured data
- Multiple Output Formats: Generates Markdown, Excel, and structured JSON
from doctra.parsers.structured_pdf_parser import StructuredPDFParser
# Basic parser without VLM (uses default PyTesseract OCR engine)
parser = StructuredPDFParser()
# Parser with VLM for structured data extraction
from doctra.engines.vlm.service import VLMStructuredExtractor
# Initialize VLM engine
vlm_engine = VLMStructuredExtractor(
vlm_provider="openai", # or "gemini", "anthropic", "openrouter", "qianfan", "ollama"
api_key="your_api_key_here"
)
# Pass VLM engine to parser
parser = StructuredPDFParser(vlm=vlm_engine)
# Parse document
parser.parse("document.pdf")Doctra uses a dependency injection pattern for OCR engines. You initialize the OCR engine externally and pass it to the parser:
from doctra.parsers.structured_pdf_parser import StructuredPDFParser
from doctra.engines.ocr import PytesseractOCREngine, PaddleOCREngine
# Option 1: Use default PyTesseract (automatic if ocr_engine=None)
parser = StructuredPDFParser() # Creates default PyTesseractOCREngine internally
# Option 2: Explicitly configure PyTesseract
tesseract_ocr = PytesseractOCREngine(
lang="eng", # Language code
psm=4, # Page segmentation mode
oem=3, # OCR engine mode
extra_config="" # Additional Tesseract config
)
parser = StructuredPDFParser(ocr_engine=tesseract_ocr)
# Option 3: Use PaddleOCR for better accuracy
paddle_ocr = PaddleOCREngine(
device="gpu", # "gpu" or "cpu"
use_doc_orientation_classify=False, # Document orientation detection
use_doc_unwarping=False, # Text image rectification
use_textline_orientation=False # Text line orientation
)
parser = StructuredPDFParser(ocr_engine=paddle_ocr)
# Option 4: Reuse OCR engine across multiple parsers
shared_ocr = PytesseractOCREngine(lang="eng", psm=6, oem=3)
parser1 = StructuredPDFParser(ocr_engine=shared_ocr)
parser2 = EnhancedPDFParser(ocr_engine=shared_ocr) # Reuse same instanceDoctra uses the same dependency injection pattern for VLM engines. You initialize the VLM engine externally and pass it to the parser:
from doctra.parsers.structured_pdf_parser import StructuredPDFParser
from doctra.engines.vlm.service import VLMStructuredExtractor
# Option 1: No VLM (default)
parser = StructuredPDFParser() # VLM processing disabled
# Option 2: Initialize VLM engine and pass to parser
vlm_engine = VLMStructuredExtractor(
vlm_provider="openai", # or "gemini", "anthropic", "openrouter", "qianfan", "ollama"
vlm_model="gpt-5", # Optional, uses default if None
api_key="your_api_key"
)
parser = StructuredPDFParser(vlm=vlm_engine)
# Option 3: Reuse VLM engine across multiple parsers
shared_vlm = VLMStructuredExtractor(
vlm_provider="gemini",
api_key="your_api_key"
)
parser1 = StructuredPDFParser(vlm=shared_vlm)
parser2 = EnhancedPDFParser(vlm=shared_vlm) # Reuse same instance
parser3 = ChartTablePDFParser(vlm=shared_vlm) # Reuse same instancefrom doctra.engines.ocr import PytesseractOCREngine, PaddleOCREngine
# Option 1: Using PyTesseract (default)
ocr_engine = PytesseractOCREngine(
lang="eng",
psm=4,
oem=3,
extra_config=""
)
# Initialize VLM engine
from doctra.engines.vlm.service import VLMStructuredExtractor
vlm_engine = VLMStructuredExtractor(
vlm_provider="openai",
vlm_model="gpt-5", # Optional, uses default if None
api_key="your_api_key"
)
parser = StructuredPDFParser(
# VLM Engine (pass the initialized engine)
vlm=vlm_engine, # or None to disable VLM
# Layout Detection Settings
layout_model_name="PP-DocLayout_plus-L",
dpi=200,
min_score=0.0,
# OCR Engine (pass the initialized engine)
ocr_engine=ocr_engine, # or None for default PyTesseract
# Output Settings
box_separator="\n"
)
# Option 2: Using PaddleOCR for better accuracy
paddle_ocr = PaddleOCREngine(
device="gpu", # Use "cpu" if no GPU available
use_doc_orientation_classify=False,
use_doc_unwarping=False,
use_textline_orientation=False
)
parser = StructuredPDFParser(
ocr_engine=paddle_ocr,
# ... other settings
)The EnhancedPDFParser extends the StructuredPDFParser with advanced image restoration capabilities using DocRes. This parser is ideal for processing scanned documents, low-quality PDFs, or documents with visual distortions that need enhancement before parsing.
- Image Restoration: Uses DocRes for document enhancement before processing
- Multiple Restoration Tasks: Supports dewarping, deshadowing, appearance enhancement, deblurring, binarization, and end-to-end restoration
- Enhanced Quality: Improves document quality for better OCR and layout detection
- All StructuredPDFParser Features: Inherits all capabilities of the base parser
- Flexible Configuration: Extensive options for restoration and processing
from doctra.parsers.enhanced_pdf_parser import EnhancedPDFParser
# Basic enhanced parser with image restoration
parser = EnhancedPDFParser(
use_image_restoration=True,
restoration_task="appearance" # Default restoration task
)
# Parse document with enhancement
parser.parse("scanned_document.pdf")from doctra.engines.ocr import PytesseractOCREngine, PaddleOCREngine
# Initialize OCR engine (PyTesseract or PaddleOCR)
ocr_engine = PytesseractOCREngine(
lang="eng",
psm=6,
oem=3
)
# Initialize VLM engine
from doctra.engines.vlm.service import VLMStructuredExtractor
vlm_engine = VLMStructuredExtractor(
vlm_provider="openai",
vlm_model="gpt-4-vision", # Optional, uses default if None
api_key="your_api_key"
)
parser = EnhancedPDFParser(
# Image Restoration Settings
use_image_restoration=True,
restoration_task="dewarping", # Correct perspective distortion
restoration_device="cuda", # Use GPU for faster processing
restoration_dpi=300, # Higher DPI for better quality
# VLM Engine (pass the initialized engine)
vlm=vlm_engine, # or None to disable VLM
# Layout Detection Settings
layout_model_name="PP-DocLayout_plus-L",
dpi=200,
min_score=0.5,
# OCR Engine (pass the initialized engine)
ocr_engine=ocr_engine, # or None for default PyTesseract
)| Task | Description | Best For |
|---|---|---|
appearance |
General appearance enhancement | Most documents (default) |
dewarping |
Correct perspective distortion | Scanned documents with perspective issues |
deshadowing |
Remove shadows and lighting artifacts | Documents with shadow problems |
deblurring |
Reduce blur and improve sharpness | Blurry or low-quality scans |
binarization |
Convert to black and white | Documents needing clean binarization |
end2end |
Complete restoration pipeline | Severely degraded documents |
The ChartTablePDFParser is a specialized parser focused specifically on extracting charts and tables from PDF documents. It's optimized for scenarios where you only need these specific elements, providing faster processing and more targeted output.
- Focused Extraction: Extracts only charts and/or tables
- Selective Processing: Choose to extract charts, tables, or both
- VLM Integration: Optional conversion to structured data
- Organized Output: Separate directories for charts and tables
- Progress Tracking: Real-time progress bars for extraction
from doctra.parsers.table_chart_extractor import ChartTablePDFParser
# Extract both charts and tables
parser = ChartTablePDFParser(
extract_charts=True,
extract_tables=True
)
# Extract only charts
parser = ChartTablePDFParser(
extract_charts=True,
extract_tables=False
)
# Parse with custom output directory
parser.parse("document.pdf", output_base_dir="my_outputs")# Initialize VLM engine
from doctra.engines.vlm.service import VLMStructuredExtractor
vlm_engine = VLMStructuredExtractor(
vlm_provider="openai",
vlm_model="gpt-5", # Optional, uses default if None
api_key="your_api_key"
)
parser = ChartTablePDFParser(
# Extraction Settings
extract_charts=True,
extract_tables=True,
# VLM Engine (pass the initialized engine)
vlm=vlm_engine, # or None to disable VLM
# Layout Detection Settings
layout_model_name="PP-DocLayout_plus-L",
dpi=200,
min_score=0.0
)The PaddleOCRVLPDFParser uses PaddleOCRVL (Vision-Language Model) for end-to-end document parsing. It combines PaddleOCRVL's advanced document understanding capabilities with DocRes image restoration and split table merging, providing a comprehensive solution for complex document processing.
Before using PaddleOCRVLPDFParser, install the required dependencies:
pip install -U "paddleocr[doc-parser]"For Linux systems:
python -m pip install https://paddle-whl.bj.bcebos.com/nightly/cu126/safetensors/safetensors-0.6.2.dev0-cp38-abi3-linux_x86_64.whlFor Windows systems:
python -m pip install https://xly-devops.cdn.bcebos.com/safetensors-nightly/safetensors-0.6.2.dev0-cp38-abi3-win_amd64.whl- End-to-End Parsing: Uses PaddleOCRVL for complete document understanding in a single pass
- Chart Recognition: Automatically extracts and converts charts to structured table format
- Document Restoration: Optional DocRes integration for enhanced document quality
- Split Table Merging: Automatically detects and merges tables split across pages
- Structured Output: Generates Markdown, HTML, and Excel files with tables and charts
- Multiple Element Types: Handles headers, text, tables, charts, footnotes, and more
from doctra import PaddleOCRVLPDFParser
# Basic parser with default settings
parser = PaddleOCRVLPDFParser(
use_image_restoration=True, # Enable DocRes restoration
use_chart_recognition=True, # Enable chart recognition
merge_split_tables=True, # Enable split table merging
device="gpu" # Use GPU for processing
)
# Parse a PDF document
parser.parse("document.pdf")from doctra import PaddleOCRVLPDFParser
parser = PaddleOCRVLPDFParser(
# DocRes Image Restoration Settings
use_image_restoration=True,
restoration_task="appearance", # Options: appearance, dewarping, deshadowing, deblurring, binarization, end2end
restoration_device="cuda", # or "cpu" or None for auto-detect
restoration_dpi=300, # DPI for restoration processing
# PaddleOCRVL Settings
use_chart_recognition=True, # Enable chart recognition and extraction
use_doc_orientation_classify=True, # Enable document orientation classification
use_doc_unwarping=True, # Enable document unwarping
use_layout_detection=True, # Enable layout detection
device="gpu", # "gpu" or "cpu"
# Split Table Merging Settings
merge_split_tables=True, # Enable split table detection and merging
bottom_threshold_ratio=0.20, # Ratio for "too close to bottom" detection
top_threshold_ratio=0.15, # Ratio for "too close to top" detection
max_gap_ratio=0.25, # Maximum allowed gap between tables
column_alignment_tolerance=10.0, # Pixel tolerance for column alignment
min_merge_confidence=0.65 # Minimum confidence score for merging
)
# Parse with custom output directory
parser.parse("document.pdf", output_dir="custom_output")The parser generates output in outputs/{document_name}/paddleocr_vl_parse/ with:
- result.md: Markdown file with all extracted content
- result.html: HTML file with formatted output
- tables.xlsx: Excel file containing all tables and charts as structured data
- tables.html: HTML file with structured tables and charts
- enhanced_pages/: Directory with DocRes-enhanced page images (if restoration enabled)
- tables/: Directory with merged table images (if split tables detected)
The parser extracts various document elements:
- Headers: Document titles and section headers
- Text: Paragraphs and body text
- Tables: Extracted as HTML and converted to Excel format
- Charts: Converted from visual format to structured table data
- Footnotes: Vision-based footnote detection
- Figure Titles: Captions and figure descriptions
The StructuredDOCXParser is a comprehensive parser for Microsoft Word documents (.docx files) that extracts text, tables, images, and structured content while preserving document formatting and order. It supports VLM integration for enhanced content analysis and structured data extraction.
- Complete DOCX Support: Extracts text, tables, images, and formatting from Word documents
- Document Order Preservation: Maintains the original sequence of elements (paragraphs, tables, images)
- VLM Integration: Optional Vision Language Model support for image analysis and table extraction
- Multiple Output Formats: Generates Markdown, HTML, and Excel files
- Excel Export: Creates structured Excel files with Table of Contents and clickable hyperlinks
- Formatting Preservation: Maintains text formatting (bold, italic, etc.) in output
- Progress Tracking: Real-time progress bars for VLM processing
from doctra.parsers.structured_docx_parser import StructuredDOCXParser
# Basic DOCX parsing
parser = StructuredDOCXParser(
extract_images=True,
preserve_formatting=True,
table_detection=True,
export_excel=True
)
# Parse DOCX document
parser.parse("document.docx")# Initialize VLM engine
from doctra.engines.vlm.service import VLMStructuredExtractor
vlm_engine = VLMStructuredExtractor(
vlm_provider="openai", # or "gemini", "anthropic", "openrouter", "qianfan", "ollama"
vlm_model="gpt-4-vision", # Optional, uses default if None
api_key="your_api_key"
)
parser = StructuredDOCXParser(
# VLM Engine (pass the initialized engine)
vlm=vlm_engine, # or None to disable VLM
# Processing Options
extract_images=True,
preserve_formatting=True,
table_detection=True,
export_excel=True
)
# Parse with VLM enhancement
parser.parse("document.docx")When parsing a DOCX document, the parser creates:
outputs/document_name/
βββ document.md # Markdown version with all content
βββ document.html # HTML version with styling
βββ tables.xlsx # Excel file with extracted tables
β βββ Table of Contents # Summary sheet with hyperlinks
β βββ Table 1 # Individual table sheets
β βββ Table 2
β βββ ...
βββ images/ # Extracted images
βββ image1.png
βββ image2.jpg
βββ ...
When VLM is enabled, the parser:
- Analyzes Images: Uses AI to extract structured data from images
- Creates Tables: Converts chart images to structured table data
- Enhanced Excel Output: Includes VLM-extracted tables in Excel file
- Smart Content Display: Shows extracted tables instead of images in Markdown/HTML
- Progress Tracking: Shows progress based on number of images processed
# Basic DOCX parsing
doctra parse-docx document.docx
# With VLM enhancement
doctra parse-docx document.docx --use-vlm --vlm-provider openai --vlm-api-key your_key
# Custom options
doctra parse-docx document.docx \
--extract-images \
--preserve-formatting \
--table-detection \
--export-excelThe DocResEngine provides direct access to DocRes image restoration capabilities. This engine is perfect for standalone image restoration tasks or when you need fine-grained control over the restoration process.
- Direct Image Restoration: Process individual images or entire PDFs
- Multiple Restoration Tasks: All 6 DocRes restoration tasks available
- GPU Acceleration: Automatic CUDA detection and optimization
- Flexible Input/Output: Support for various image formats and PDFs
- Metadata Extraction: Get detailed information about restoration process
from doctra.engines.image_restoration import DocResEngine
# Initialize DocRes engine
docres = DocResEngine(device="cuda") # or "cpu" or None for auto-detect
# Restore a single image
restored_img, metadata = docres.restore_image(
image="path/to/image.jpg",
task="appearance"
)
# Restore entire PDF
enhanced_pdf = docres.restore_pdf(
pdf_path="document.pdf",
output_path="enhanced_document.pdf",
task="appearance"
)# Initialize with custom settings
docres = DocResEngine(
device="cuda", # Force GPU usage
use_half_precision=True, # Use half precision for faster processing
model_path="custom/model.pth", # Custom model path (optional)
mbd_path="custom/mbd.pth" # Custom MBD model path (optional)
)
# Process multiple images
images = ["doc1.jpg", "doc2.jpg", "doc3.jpg"]
for img_path in images:
restored_img, metadata = docres.restore_image(
image=img_path,
task="dewarping"
)
print(f"Processed {img_path}: {metadata}")
# Batch PDF processing
pdfs = ["report1.pdf", "report2.pdf"]
for pdf_path in pdfs:
output_path = f"enhanced_{os.path.basename(pdf_path)}"
docres.restore_pdf(
pdf_path=pdf_path,
output_path=output_path,
task="end2end" # Complete restoration pipeline
)| Task | Description | Use Case |
|---|---|---|
appearance |
General appearance enhancement | Default choice for most documents |
dewarping |
Correct document perspective distortion | Scanned documents with perspective issues |
deshadowing |
Remove shadows and lighting artifacts | Documents with shadow problems |
deblurring |
Reduce blur and improve sharpness | Blurry or low-quality scans |
binarization |
Convert to black and white | Documents needing clean binarization |
end2end |
Complete restoration pipeline | Severely degraded documents |
Doctra provides a comprehensive web interface built with Gradio that makes document processing accessible to non-technical users.
- Drag & Drop Interface: Upload PDFs by dragging and dropping
- Multiple Parsers: Choose between full parsing, enhanced parsing, and chart/table extraction
- Real-time Processing: See progress as documents are processed
- VLM Integration: Configure API keys for AI features
- Output Preview: View results directly in the browser
- Download Results: Download processed files as ZIP archives
from doctra.ui.app import launch_ui
# Launch the web interface
launch_ui()Or from command line:
python gradio_app.py- Full Parse Tab: Complete document processing with page navigation
- DOCX Parser Tab: Microsoft Word document parsing with VLM integration
- Tables & Charts Tab: Specialized extraction with VLM integration
- DocRes Tab: Image restoration with before/after comparison
- Enhanced Parser Tab: Enhanced parsing with DocRes integration
Doctra includes a powerful CLI for batch processing and automation.
# Full document parsing
doctra parse document.pdf
# DOCX document parsing
doctra parse-docx document.docx
# Enhanced parsing with image restoration
doctra enhance document.pdf --restoration-task appearance
# Extract only charts and tables
doctra extract charts document.pdf
doctra extract tables document.pdf
doctra extract both document.pdf --use-vlm
# Visualize layout detection
doctra visualize document.pdf
# Quick document analysis
doctra analyze document.pdf
# System information
doctra info# Enhanced parsing with custom settings
doctra enhance document.pdf \
--restoration-task dewarping \
--restoration-device cuda \
--use-vlm \
--vlm-provider openai \
--vlm-api-key your_key
# Extract charts with VLM
doctra extract charts document.pdf \
--use-vlm \
--vlm-provider gemini \
--vlm-api-key your_key
# Batch processing
doctra parse *.pdf --output-dir results/Doctra provides powerful visualization capabilities to help you understand how the layout detection works and verify the accuracy of element extraction.
The StructuredPDFParser includes a built-in visualization method that displays PDF pages with bounding boxes overlaid on detected elements. This is perfect for:
- Debugging: Verify that layout detection is working correctly
- Quality Assurance: Check the accuracy of element identification
- Documentation: Create visual documentation of extraction results
- Analysis: Understand document structure and layout patterns
from doctra.parsers.structured_pdf_parser import StructuredPDFParser
# Initialize parser (OCR engine is optional for visualization)
parser = StructuredPDFParser()
# Display visualization (opens in default image viewer)
parser.display_pages_with_boxes("document.pdf")# Custom visualization configuration
parser.display_pages_with_boxes(
pdf_path="document.pdf",
num_pages=5, # Number of pages to visualize
cols=3, # Number of columns in grid
page_width=600, # Width of each page in pixels
spacing=30, # Spacing between pages
save_path="layout_visualization.png" # Save to file instead of displaying
)- Color-coded Elements: Each element type (text, table, chart, figure) has a distinct color
- Confidence Scores: Shows detection confidence for each element
- Grid Layout: Multiple pages displayed in an organized grid
- Interactive Legend: Color legend showing all detected element types
- High Quality: High-resolution output suitable for documentation
- Flexible Output: Display on screen or save to file
The visualization shows:
- Blue boxes: Text elements
- Red boxes: Tables
- Green boxes: Charts
- Orange boxes: Figures
- Labels: Element type and confidence score (e.g., "table (0.95)")
- Page titles: Page number and element count
- Summary statistics: Total elements detected by type
- Document Analysis: Quickly assess document structure and complexity
- Quality Control: Verify extraction accuracy before processing
- Debugging: Identify issues with layout detection
- Documentation: Create visual reports of extraction results
- Training: Help users understand how the system works
| Parameter | Default | Description |
|---|---|---|
num_pages |
3 | Number of pages to visualize |
cols |
2 | Number of columns in grid layout |
page_width |
800 | Width of each page in pixels |
spacing |
40 | Spacing between pages in pixels |
save_path |
None | Path to save visualization (if None, displays on screen) |
from doctra.parsers.structured_pdf_parser import StructuredPDFParser
# Initialize parser (uses default PyTesseract OCR engine)
parser = StructuredPDFParser()
# Process document
parser.parse("financial_report.pdf")
# Output will be saved to: outputs/financial_report/
# - Extracted text content
# - Cropped images of figures, charts, and tables
# - Markdown file with all contentfrom doctra.parsers.enhanced_pdf_parser import EnhancedPDFParser
from doctra.engines.ocr import PytesseractOCREngine
# Initialize OCR engine (optional - defaults to PyTesseract if not provided)
ocr_engine = PytesseractOCREngine(lang="eng", psm=4, oem=3)
# Initialize VLM engine
from doctra.engines.vlm.service import VLMStructuredExtractor
vlm_engine = VLMStructuredExtractor(
vlm_provider="openai",
api_key="your_api_key"
)
# Initialize enhanced parser with image restoration
parser = EnhancedPDFParser(
use_image_restoration=True,
restoration_task="dewarping", # Correct perspective distortion
restoration_device="cuda", # Use GPU for faster processing
ocr_engine=ocr_engine, # Pass OCR engine instance
vlm=vlm_engine # Pass VLM engine instance
)
# Process scanned document with enhancement
parser.parse("scanned_document.pdf")
# Output will include:
# - Enhanced PDF with restored images
# - All standard parsing outputs
# - Improved OCR accuracy due to restorationfrom doctra.parsers.structured_pdf_parser import StructuredPDFParser
from doctra.engines.ocr import PaddleOCREngine
# Initialize PaddleOCR engine with custom settings
paddle_ocr = PaddleOCREngine(
device="gpu", # Use "cpu" if no GPU available
use_doc_orientation_classify=False,
use_doc_unwarping=False,
use_textline_orientation=False
)
# Create parser with PaddleOCR engine
parser = StructuredPDFParser(
ocr_engine=paddle_ocr
)
# Process document with PaddleOCR
parser.parse("complex_document.pdf")
# PaddleOCR provides:
# - Higher accuracy for complex documents
# - Better performance on GPU
# - Automatic model managementfrom doctra.engines.image_restoration import DocResEngine
# Initialize DocRes engine
docres = DocResEngine(device="cuda")
# Restore individual images
restored_img, metadata = docres.restore_image(
image="blurry_document.jpg",
task="deblurring"
)
# Restore entire PDF
docres.restore_pdf(
pdf_path="low_quality.pdf",
output_path="enhanced.pdf",
task="appearance"
)from doctra.parsers.structured_docx_parser import StructuredDOCXParser
# Basic DOCX parsing
parser = StructuredDOCXParser(
extract_images=True,
preserve_formatting=True,
table_detection=True,
export_excel=True
)
# Parse Word document
parser.parse("report.docx")
# Output will include:
# - Markdown file with all content
# - HTML file with styling
# - Excel file with extracted tables
# - Extracted images in organized foldersfrom doctra.parsers.structured_docx_parser import StructuredDOCXParser
# Initialize VLM engine
from doctra.engines.vlm.service import VLMStructuredExtractor
vlm_engine = VLMStructuredExtractor(
vlm_provider="openai",
vlm_model="gpt-4-vision", # Optional, uses default if None
api_key="your_api_key"
)
# DOCX parsing with VLM for enhanced analysis
parser = StructuredDOCXParser(
vlm=vlm_engine, # Pass VLM engine instance
extract_images=True,
preserve_formatting=True,
table_detection=True,
export_excel=True
)
# Parse with AI enhancement
parser.parse("financial_report.docx")
# Output will include:
# - All standard outputs
# - VLM-extracted tables from images
# - Enhanced Excel with Table of Contents
# - Smart content display (tables instead of images)from doctra import PaddleOCRVLPDFParser
# Initialize PaddleOCRVL parser with all features enabled
parser = PaddleOCRVLPDFParser(
use_image_restoration=True, # Enable DocRes restoration
restoration_task="appearance", # Use appearance enhancement
use_chart_recognition=True, # Enable chart recognition
merge_split_tables=True, # Enable split table merging
device="gpu" # Use GPU for faster processing
)
# Parse document - automatically handles all content types
parser.parse("financial_report.pdf")
# Output will be in: outputs/financial_report/paddleocr_vl_parse/
# - result.md: All content in Markdown
# - result.html: Formatted HTML output
# - tables.xlsx: All tables and charts in Excel format
# - tables.html: Structured tables and chartsfrom doctra.parsers.table_chart_extractor import ChartTablePDFParser
# Initialize VLM engine
from doctra.engines.vlm.service import VLMStructuredExtractor
vlm_engine = VLMStructuredExtractor(
vlm_provider="openai",
api_key="your_api_key"
)
# Initialize parser with VLM
parser = ChartTablePDFParser(
extract_charts=True,
extract_tables=True,
vlm=vlm_engine # Pass VLM engine instance
)
# Process document
parser.parse("data_report.pdf", output_base_dir="extracted_data")
# Output will include:
# - Cropped chart and table images
# - Structured data in Excel format
# - Markdown tables with extracted datafrom doctra.ui.app import launch_ui
# Launch the web interface
launch_ui()
# Or build the interface programmatically
from doctra.ui.app import build_demo
demo = build_demo()
demo.launch(share=True) # Share publicly# DOCX parsing with VLM
doctra parse-docx document.docx \
--use-vlm \
--vlm-provider openai \
--vlm-api-key your_key \
--extract-images \
--export-excel
# Enhanced parsing with custom settings
doctra enhance document.pdf \
--restoration-task dewarping \
--restoration-device cuda \
--use-vlm \
--vlm-provider openai \
--vlm-api-key your_key
# Extract charts with VLM
doctra extract charts document.pdf \
--use-vlm \
--vlm-provider gemini \
--vlm-api-key your_key
# Batch processing
doctra parse *.pdf --output-dir results/from doctra.parsers.structured_pdf_parser import StructuredPDFParser
# Initialize parser (OCR engine not needed for visualization)
parser = StructuredPDFParser()
# Create a comprehensive visualization
parser.display_pages_with_boxes(
pdf_path="research_paper.pdf",
num_pages=6, # Visualize first 6 pages
cols=2, # 2 columns layout
page_width=700, # Larger pages for better detail
spacing=50, # More spacing between pages
save_path="research_paper_layout.png" # Save for documentation
)
# For quick preview (displays on screen)
parser.display_pages_with_boxes("document.pdf")- Advanced document layout analysis using PaddleOCR
- Accurate identification of text, tables, charts, and figures
- Configurable confidence thresholds
- Dual OCR Engine Support: Choose between PyTesseract (default) or PaddleOCR PP-OCRv5_server
- Dependency Injection Pattern: Initialize OCR engines externally and pass them to parsers for clearer API
- PaddleOCR PP-OCRv5_server: Advanced model from PaddleOCR 3.0 with superior accuracy
- PyTesseract: Traditional OCR with extensive language support and fine-grained control
- Reusable Engines: Create OCR engine instances once and reuse across multiple parsers
- Support for multiple languages (PyTesseract)
- GPU acceleration for PaddleOCR
- Configurable OCR parameters for both engines
- Vision-Language Model: Advanced document understanding using PaddleOCRVL
- Complete Document Parsing: Single-pass extraction of all content types
- Chart Recognition: Automatic chart detection and conversion to structured tables
- Multi-Element Support: Handles headers, text, tables, charts, footnotes, and figure titles
- Integrated Restoration: Optional DocRes image restoration for enhanced quality
- Split Table Merging: Automatic detection and merging of tables across pages
- Structured Output: Generates Excel files with both tables and charts
- Automatic cropping and saving of figures, charts, and tables
- Organized output directory structure
- High-resolution image preservation
- 6 Restoration Tasks: Dewarping, deshadowing, appearance enhancement, deblurring, binarization, and end-to-end restoration
- GPU Acceleration: Automatic CUDA detection and optimization
- Enhanced Quality: Improves document quality for better OCR and layout detection
- Flexible Processing: Standalone image restoration or integrated with parsing
- Dependency Injection Pattern: Initialize VLM engines externally and pass them to parsers for clearer API
- Vision Language Model Support: Structured data extraction from visual elements
- Multiple Provider Options: OpenAI, Gemini, Anthropic, OpenRouter, Qianfan, Ollama
- Reusable Engines: Create VLM engine instances once and reuse across multiple parsers
- Automatic Conversion: Charts and tables converted to structured formats (Excel, HTML, JSON)
- Markdown: Human-readable document with embedded images and tables
- Excel: Structured data in spreadsheet format
- JSON: Programmatically accessible structured data
- HTML: Interactive web-ready documents
- Images: High-quality cropped visual elements
- Web UI: Gradio-based interface with drag & drop functionality
- Command Line: Powerful CLI for batch processing and automation
- Multiple Tabs: Full parsing, DOCX parsing, enhanced parsing, chart/table extraction, and image restoration
- Extensive customization options
- Performance tuning parameters
- Output format selection
- Device selection (CPU/GPU)
Doctra builds upon several excellent open-source projects:
- PaddleOCR - Advanced document layout detection and OCR capabilities
- DocRes - State-of-the-art document image restoration model
- Outlines - Structured output generation for LLMs
We thank the developers and contributors of these projects for their valuable work that makes Doctra possible.
