diff --git a/doc/python/axes.md b/doc/python/axes.md index 311e4b18116..643e0de5046 100644 --- a/doc/python/axes.md +++ b/doc/python/axes.md @@ -20,7 +20,7 @@ jupyter: name: python nbconvert_exporter: python pygments_lexer: ipython3 - version: 3.9.0 + version: 3.9.7 plotly: description: How to adjust axes properties in Python - axes titles, styling and coloring axes and grid lines, ticks, tick labels and more. @@ -386,12 +386,10 @@ fig.show() _new in 5.8_ -You can position and style minor ticks on a Cartesian axis using `minor`. This takes a `dict` of properties to apply to minor ticks. Available properties include: `tickmode`, `tickvals`, `tickcolor`, `ticklen`, `tickwidth`, `dtick`, `tick0`, `nticks`, `ticks`, `showgrid`, `gridcolor`, `griddash`, and `gridwidth`. +You can position and style minor ticks on a Cartesian axis using the `minor` attribute. This takes a `dict` of properties to apply to minor ticks. See the [figure reference](https://plotly.com/python/reference/layout/xaxis/#layout-xaxis-minor) for full details on the accepted keys in this dict. In the following example, we add minor ticks to the x-axis and then to the y-axis. For the y-axis we add ticks on the inside: `ticks="inside"`. On the x-axis we've specified some additional properties to style the minor ticks, setting the length of the ticks with `ticklen` and the color with `tickcolor`. We've also turned on grid lines for the x-axis minor ticks using `showgrid`. -Note: Minor ticks and grid lines are not currently supported on color bars, ternary plots, polar charts, geo plots, or on multi-categorical, or 3D axes. - ```python import plotly.express as px import pandas as pd @@ -401,7 +399,7 @@ fig = px.scatter(df, x="total_bill", y="tip", color="sex") fig.update_xaxes(minor=dict(ticklen=6, tickcolor="black", showgrid=True)) -fig.update_yaxes(minor=dict(ticks="inside")) +fig.update_yaxes(minor_ticks="inside") fig.show() ``` @@ -492,15 +490,14 @@ fig.show() _new in 5.8_ -By default grid lines are `solid`. Set the `griddash` property to change this style. In this example we display the x-axis grid lines as `dot`. It can also be set to `dash`, `longdash`, `dashdot`, or `longdashdot`. +By default grid lines are `solid`. Set the `griddash` property to change this style. In this example we display the x-axis grid lines as `dash` and the minor grid lines as `dot`. Other allowable values are `longdash`, `dashdot`, or `longdashdot`. ```python import plotly.express as px df = px.data.iris() fig = px.scatter(df, x="sepal_width", y="sepal_length", facet_col="species") -fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='LightPink', griddash='dot') -fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='LightPink') +fig.update_xaxes(gridcolor='black', griddash='dash', minor_griddash="dot") fig.show() ``` diff --git a/doc/python/log-plot.md b/doc/python/log-plot.md index 83f993d4220..27d19febd1b 100644 --- a/doc/python/log-plot.md +++ b/doc/python/log-plot.md @@ -20,7 +20,7 @@ jupyter: name: python nbconvert_exporter: python pygments_lexer: ipython3 - version: 3.9.0 + version: 3.9.7 plotly: description: How to make Log plots in Python with Plotly. display_as: scientific @@ -64,7 +64,7 @@ fig.show() _new in 5.8_ -You can position and style minor ticks using `minor`. This takes a `dict` of properties to apply to minor ticks. Available properties include: `tickmode`, `tickvals`, `tickcolor`, `ticklen`, `tickwidth`, `dtick`, `tick0`, `nticks`, `ticks`, `showgrid`, `gridcolor`, `griddash`, and `gridwidth`. +You can position and style minor ticks using `minor`. This takes a `dict` of properties to apply to minor ticks. See the [figure reference](https://plotly.com/python/reference/layout/xaxis/#layout-xaxis-minor) for full details on the accepted keys in this dict. In this example we set the tick length with `ticklen`, add the ticks on the inside with `ticks="inside"`, and turn grid lines on with `howgrid=True`. @@ -75,7 +75,7 @@ df = px.data.gapminder().query("year == 2007") fig = px.scatter(df, x="gdpPercap", y="lifeExp", hover_name="country", log_x=True, range_x=[1,100000], range_y=[0,100]) -fig.update_xaxes(minor=dict(ticks="inside", ticklen=6, showgrid=True))# {"ticks": "inside", "ticklen": 6, "showgrid": True}) +fig.update_xaxes(minor=dict(ticks="inside", ticklen=6, showgrid=True)) fig.show() ``` diff --git a/doc/python/time-series.md b/doc/python/time-series.md index df9e2b33bd2..37be9dc48c0 100644 --- a/doc/python/time-series.md +++ b/doc/python/time-series.md @@ -20,7 +20,7 @@ jupyter: name: python nbconvert_exporter: python pygments_lexer: ipython3 - version: 3.9.0 + version: 3.9.7 plotly: description: How to plot date and time in python. display_as: financial @@ -139,9 +139,9 @@ fig.show() _new in 5.8_ -You can add minor ticks to an axis with `minor`. This takes a `dict` of properties to apply to minor ticks. Available properties include: `tickmode`, `tickvals`, `tickcolor`, `ticklen`, `tickwidth`, `dtick`, `tick0`, `nticks`, `ticks`, `showgrid`, `gridcolor`, `griddash`, and `gridwidth`. +You can add minor ticks to an axis with `minor`. This takes a `dict` of properties to apply to minor ticks. See the [figure reference](https://plotly.com/python/reference/layout/xaxis/#layout-xaxis-minor) for full details on the accepted keys in this dict. -In this example, we've added minor ticks to the inside of the x-axis and turned on grid lines. +In this example, we've added minor ticks to the inside of the x-axis and turned on minor grid lines. ```python import pandas as pd @@ -159,7 +159,7 @@ fig.show() _new in 5.8_ -You can set `dtick` on `minor` to control the spacing for minor ticks and grid lines. In the following example, by setting `dtick=7*24*3.6e6` (the number of milliseconds in a week) and setting `tick0="2016-07-04"` (the first Monday in our data), a minor tick and grid line is displayed for the start of each week. When zoomed out, we can see where each month and week begins and ends. +You can set `dtick` on `minor` to control the spacing for minor ticks and grid lines. In the following example, by setting `dtick=7*24*60*60*1000` (the number of milliseconds in a week) and setting `tick0="2016-07-043"` (the first Sunday in our data), a minor tick and grid line is displayed for the start of each week. When zoomed out, we can see where each month and week begins and ends. ```python import pandas as pd @@ -169,7 +169,17 @@ df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finan df = df.loc[(df["Date"] >= "2016-07-01") & (df["Date"] <= "2016-12-01")] fig = px.line(df, x='Date', y='AAPL.High') -fig.update_xaxes(ticks= "outside", ticklabelmode= "period", tickcolor= "black", tickwidth=2, ticklen=10, minor=dict(ticks="outside", dtick=7*24*3.6e6, tick0="2016-07-04", griddash='dot', gridcolor='pink')) +fig.update_xaxes(ticks= "outside", + ticklabelmode= "period", + tickcolor= "black", + ticklen=10, + minor=dict( + ticklen=4, + dtick=7*24*60*60*1000, + tick0="2016-07-03", + griddash='dot', + gridcolor='white') + ) fig.show() ```