|
| 1 | +// Basic matrix operations using row vectors wrapped in column vectors as matrices. |
| 2 | +// Supports i32, should be interchangeable for other types. |
| 3 | +// Wikipedia reference: https://www.wikiwand.com/en/Matrix_(mathematics) |
| 4 | + |
| 5 | +pub fn matrix_add(summand0: &[Vec<i32>], summand1: &[Vec<i32>]) -> Vec<Vec<i32>> { |
| 6 | + // Add two matrices of identical dimensions |
| 7 | + let mut result: Vec<Vec<i32>> = vec![]; |
| 8 | + if summand0.len() != summand1.len() { |
| 9 | + panic!("Matrix dimensions do not match"); |
| 10 | + } |
| 11 | + for row in 0..summand0.len() { |
| 12 | + if summand0[row].len() != summand1[row].len() { |
| 13 | + panic!("Matrix dimensions do not match"); |
| 14 | + } |
| 15 | + result.push(vec![]); |
| 16 | + for column in 0..summand1[0].len() { |
| 17 | + result[row].push(summand0[row][column] + summand1[row][column]); |
| 18 | + } |
| 19 | + } |
| 20 | + result |
| 21 | +} |
| 22 | + |
| 23 | +pub fn matrix_subtract(minuend: &[Vec<i32>], subtrahend: &[Vec<i32>]) -> Vec<Vec<i32>> { |
| 24 | + // Subtract one matrix from another. They need to have identical dimensions. |
| 25 | + let mut result: Vec<Vec<i32>> = vec![]; |
| 26 | + if minuend.len() != subtrahend.len() { |
| 27 | + panic!("Matrix dimensions do not match"); |
| 28 | + } |
| 29 | + for row in 0..minuend.len() { |
| 30 | + if minuend[row].len() != subtrahend[row].len() { |
| 31 | + panic!("Matrix dimensions do not match"); |
| 32 | + } |
| 33 | + result.push(vec![]); |
| 34 | + for column in 0..subtrahend[0].len() { |
| 35 | + result[row].push(minuend[row][column] - subtrahend[row][column]); |
| 36 | + } |
| 37 | + } |
| 38 | + result |
| 39 | +} |
| 40 | + |
| 41 | +// Disable cargo clippy warnings about needless range loops. |
| 42 | +// As the iterating variable is used as index while multiplying, |
| 43 | +// using the item itself would defeat the variables purpose. |
| 44 | +#[allow(clippy::needless_range_loop)] |
| 45 | +pub fn matrix_multiply(multiplier: &[Vec<i32>], multiplicand: &[Vec<i32>]) -> Vec<Vec<i32>> { |
| 46 | + // Multiply two matching matrices. The multiplier needs to have the same amount |
| 47 | + // of columns as the multiplicand has rows. |
| 48 | + let mut result: Vec<Vec<i32>> = vec![]; |
| 49 | + let mut temp; |
| 50 | + // Using variable to compare lenghts of rows in multiplicand later |
| 51 | + let row_right_length = multiplicand[0].len(); |
| 52 | + for row_left in 0..multiplier.len() { |
| 53 | + if multiplier[row_left].len() != multiplicand.len() { |
| 54 | + panic!("Matrix dimensions do not match"); |
| 55 | + } |
| 56 | + result.push(vec![]); |
| 57 | + for column_right in 0..multiplicand[0].len() { |
| 58 | + temp = 0; |
| 59 | + for row_right in 0..multiplicand.len() { |
| 60 | + if row_right_length != multiplicand[row_right].len() { |
| 61 | + // If row is longer than a previous row cancel operation with error |
| 62 | + panic!("Matrix dimensions do not match"); |
| 63 | + } |
| 64 | + temp += multiplier[row_left][row_right] * multiplicand[row_right][column_right]; |
| 65 | + } |
| 66 | + result[row_left].push(temp); |
| 67 | + } |
| 68 | + } |
| 69 | + result |
| 70 | +} |
| 71 | + |
| 72 | +pub fn matrix_transpose(matrix: &[Vec<i32>]) -> Vec<Vec<i32>> { |
| 73 | + // Transpose a matrix of any size |
| 74 | + let mut result: Vec<Vec<i32>> = vec![Vec::with_capacity(matrix.len()); matrix[0].len()]; |
| 75 | + for row in matrix { |
| 76 | + for col in 0..row.len() { |
| 77 | + result[col].push(row[col]); |
| 78 | + } |
| 79 | + } |
| 80 | + result |
| 81 | +} |
| 82 | + |
| 83 | +pub fn matrix_scalar_multiplication(matrix: &[Vec<i32>], scalar: i32) -> Vec<Vec<i32>> { |
| 84 | + // Multiply a matrix of any size with a scalar |
| 85 | + let mut result: Vec<Vec<i32>> = vec![Vec::with_capacity(matrix.len()); matrix[0].len()]; |
| 86 | + for row in 0..matrix.len() { |
| 87 | + for column in 0..matrix[row].len() { |
| 88 | + result[row].push(scalar * matrix[row][column]); |
| 89 | + } |
| 90 | + } |
| 91 | + result |
| 92 | +} |
| 93 | + |
| 94 | +#[cfg(test)] |
| 95 | +mod tests { |
| 96 | + use super::matrix_add; |
| 97 | + use super::matrix_multiply; |
| 98 | + use super::matrix_scalar_multiplication; |
| 99 | + use super::matrix_subtract; |
| 100 | + use super::matrix_transpose; |
| 101 | + |
| 102 | + #[test] |
| 103 | + fn test_add() { |
| 104 | + let input0: Vec<Vec<i32>> = vec![vec![1, 0, 1], vec![0, 2, 0], vec![5, 0, 1]]; |
| 105 | + let input1: Vec<Vec<i32>> = vec![vec![1, 0, 0], vec![0, 1, 0], vec![0, 0, 1]]; |
| 106 | + let input_wrong0: Vec<Vec<i32>> = vec![vec![1, 0, 0, 4], vec![0, 1, 0], vec![0, 0, 1]]; |
| 107 | + let input_wrong1: Vec<Vec<i32>> = |
| 108 | + vec![vec![1, 0, 0], vec![0, 1, 0], vec![0, 0, 1], vec![1, 1, 1]]; |
| 109 | + let input_wrong2: Vec<Vec<i32>> = vec![vec![]]; |
| 110 | + let exp_result: Vec<Vec<i32>> = vec![vec![2, 0, 1], vec![0, 3, 0], vec![5, 0, 2]]; |
| 111 | + assert_eq!(matrix_add(&input0, &input1), exp_result); |
| 112 | + let result0 = std::panic::catch_unwind(|| matrix_add(&input0, &input_wrong0)); |
| 113 | + assert!(result0.is_err()); |
| 114 | + let result1 = std::panic::catch_unwind(|| matrix_add(&input0, &input_wrong1)); |
| 115 | + assert!(result1.is_err()); |
| 116 | + let result2 = std::panic::catch_unwind(|| matrix_add(&input0, &input_wrong2)); |
| 117 | + assert!(result2.is_err()); |
| 118 | + } |
| 119 | + |
| 120 | + #[test] |
| 121 | + fn test_subtract() { |
| 122 | + let input0: Vec<Vec<i32>> = vec![vec![1, 0, 1], vec![0, 2, 0], vec![5, 0, 1]]; |
| 123 | + let input1: Vec<Vec<i32>> = vec![vec![1, 0, 0], vec![0, 1, 3], vec![0, 0, 1]]; |
| 124 | + let input_wrong0: Vec<Vec<i32>> = vec![vec![1, 0, 0, 4], vec![0, 1, 0], vec![0, 0, 1]]; |
| 125 | + let input_wrong1: Vec<Vec<i32>> = |
| 126 | + vec![vec![1, 0, 0], vec![0, 1, 0], vec![0, 0, 1], vec![1, 1, 1]]; |
| 127 | + let input_wrong2: Vec<Vec<i32>> = vec![vec![]]; |
| 128 | + let exp_result: Vec<Vec<i32>> = vec![vec![0, 0, 1], vec![0, 1, -3], vec![5, 0, 0]]; |
| 129 | + assert_eq!(matrix_subtract(&input0, &input1), exp_result); |
| 130 | + let result0 = std::panic::catch_unwind(|| matrix_subtract(&input0, &input_wrong0)); |
| 131 | + assert!(result0.is_err()); |
| 132 | + let result1 = std::panic::catch_unwind(|| matrix_subtract(&input0, &input_wrong1)); |
| 133 | + assert!(result1.is_err()); |
| 134 | + let result2 = std::panic::catch_unwind(|| matrix_subtract(&input0, &input_wrong2)); |
| 135 | + assert!(result2.is_err()); |
| 136 | + } |
| 137 | + |
| 138 | + #[test] |
| 139 | + fn test_multiply() { |
| 140 | + let input0: Vec<Vec<i32>> = |
| 141 | + vec![vec![1, 2, 3], vec![4, 2, 6], vec![3, 4, 1], vec![2, 4, 8]]; |
| 142 | + let input1: Vec<Vec<i32>> = vec![vec![1, 3, 3, 2], vec![7, 6, 2, 1], vec![3, 4, 2, 1]]; |
| 143 | + let input_wrong0: Vec<Vec<i32>> = vec![ |
| 144 | + vec![1, 3, 3, 2, 4, 6, 6], |
| 145 | + vec![7, 6, 2, 1], |
| 146 | + vec![3, 4, 2, 1], |
| 147 | + ]; |
| 148 | + let input_wrong1: Vec<Vec<i32>> = vec![ |
| 149 | + vec![1, 3, 3, 2], |
| 150 | + vec![7, 6, 2, 1], |
| 151 | + vec![3, 4, 2, 1], |
| 152 | + vec![3, 4, 2, 1], |
| 153 | + ]; |
| 154 | + let exp_result: Vec<Vec<i32>> = vec![ |
| 155 | + vec![24, 27, 13, 7], |
| 156 | + vec![36, 48, 28, 16], |
| 157 | + vec![34, 37, 19, 11], |
| 158 | + vec![54, 62, 30, 16], |
| 159 | + ]; |
| 160 | + assert_eq!(matrix_multiply(&input0, &input1), exp_result); |
| 161 | + let result0 = std::panic::catch_unwind(|| matrix_multiply(&input0, &input_wrong0)); |
| 162 | + assert!(result0.is_err()); |
| 163 | + let result1 = std::panic::catch_unwind(|| matrix_multiply(&input0, &input_wrong1)); |
| 164 | + assert!(result1.is_err()); |
| 165 | + } |
| 166 | + |
| 167 | + #[test] |
| 168 | + fn test_transpose() { |
| 169 | + let input0: Vec<Vec<i32>> = vec![vec![1, 0, 1], vec![0, 2, 0], vec![5, 0, 1]]; |
| 170 | + let input1: Vec<Vec<i32>> = vec![vec![3, 4, 2], vec![0, 1, 3], vec![3, 1, 1]]; |
| 171 | + let exp_result1: Vec<Vec<i32>> = vec![vec![1, 0, 5], vec![0, 2, 0], vec![1, 0, 1]]; |
| 172 | + let exp_result2: Vec<Vec<i32>> = vec![vec![3, 0, 3], vec![4, 1, 1], vec![2, 3, 1]]; |
| 173 | + assert_eq!(matrix_transpose(&input0), exp_result1); |
| 174 | + assert_eq!(matrix_transpose(&input1), exp_result2); |
| 175 | + } |
| 176 | + |
| 177 | + #[test] |
| 178 | + fn test_matrix_scalar_multiplication() { |
| 179 | + let input0: Vec<Vec<i32>> = vec![vec![3, 2, 2], vec![0, 2, 0], vec![5, 4, 1]]; |
| 180 | + let input1: Vec<Vec<i32>> = vec![vec![1, 0, 0], vec![0, 1, 0], vec![0, 0, 1]]; |
| 181 | + let exp_result1: Vec<Vec<i32>> = vec![vec![9, 6, 6], vec![0, 6, 0], vec![15, 12, 3]]; |
| 182 | + let exp_result2: Vec<Vec<i32>> = vec![vec![3, 0, 0], vec![0, 3, 0], vec![0, 0, 3]]; |
| 183 | + assert_eq!(matrix_scalar_multiplication(&input0, 3), exp_result1); |
| 184 | + assert_eq!(matrix_scalar_multiplication(&input1, 3), exp_result2); |
| 185 | + } |
| 186 | +} |
0 commit comments