PEERRec: An AI-based approach to Automatically Generate Recommendations and Predict Decisions in Peer Review
This repository contains dataset and code of the "PEERRec: An AI-based approach to Automatically Generate Recommendations and Predict Decisions in Peer Review" Authors: Prabhat Kumar Bharti, Tirthankar Ghoshal, Mayank Agrawal, Asif Ekbal, Affiliation: Indian Institute of Technology, Patna, India
Scrape ICLR reviews and papers from Openreview, convert PDF of papers to JSON using Scienceparse library, and rename combine them in a folder in the following format:
reviews.json : Corresponding to reviews of a paper
reviews.paper.json : Paper corresponding to the review above
Further, follow the following steps:
python ./Preprocessing/review_paper_json_to_csv.py
python ./Preprocessing/Create_paper__sections_summary.py \
--papers_pdf path_to_CSV_of_papers_created_in_step_1
python ./Preprocessing/splitting.py
python ./Preprocessing/SplittingPaper.py
python ./Preprocessing/Create_sentencewise_files.py \
--dataset path_to_directory_of_above_output_files
python ./Preprocessing/Create_review_embeddings.py \
--dataset path_to_directory_of_above_output_files
python ./Preprocessing/Create_paper_sections_embeddings.py \
--dataset path_to_directory_of_above_output_files
python ./Preprocessing/Create_VADER_sentiment_matrix.py \
--dataset path_to_directory_of_above_output_files
We provide the Preprocessed database here for ICLR 2017, 2018, 2019, 2020 and 2021.
python ./regression_peer_review.py \
--dataset path_to_preprocessed_files_directory
python ./classification_peer_review.py \
--dataset path_to_preprocessed_files_directory