Skip to content

PEERRec: An AI-based approach to Automatically Generate Recommendations and Predict Decisions in Peer Review

Notifications You must be signed in to change notification settings

PrabhatkrBharti/PEERRec

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 

Repository files navigation

PEERRec: An AI-based approach to Automatically Generate Recommendations and Predict Decisions in Peer Review

This repository contains dataset and code of the "PEERRec: An AI-based approach to Automatically Generate Recommendations and Predict Decisions in Peer Review" Authors: Prabhat Kumar Bharti, Tirthankar Ghoshal, Mayank Agrawal, Asif Ekbal, Affiliation: Indian Institute of Technology, Patna, India

Preprocessing dataset.

Scrape ICLR reviews and papers from Openreview, convert PDF of papers to JSON using Scienceparse library, and rename combine them in a folder in the following format:

reviews.json : Corresponding to reviews of a paper

reviews.paper.json : Paper corresponding to the review above

Further, follow the following steps:

1. JSON to CSV

python ./Preprocessing/review_paper_json_to_csv.py

2. Create Section wise summary of papers

python ./Preprocessing/Create_paper__sections_summary.py \
--papers_pdf path_to_CSV_of_papers_created_in_step_1

3. Split data in row-wise instances

python ./Preprocessing/splitting.py
python ./Preprocessing/SplittingPaper.py
python ./Preprocessing/Create_sentencewise_files.py \
--dataset path_to_directory_of_above_output_files

4. Create Embeddings

python ./Preprocessing/Create_review_embeddings.py  \
--dataset path_to_directory_of_above_output_files
python ./Preprocessing/Create_paper_sections_embeddings.py \
--dataset path_to_directory_of_above_output_files
python ./Preprocessing/Create_VADER_sentiment_matrix.py \
--dataset path_to_directory_of_above_output_files

We provide the Preprocessed database here for ICLR 2017, 2018, 2019, 2020 and 2021.

Proposed Model

For running our proposed model for Recommendation Score prediction, run:

python ./regression_peer_review.py   \
--dataset path_to_preprocessed_files_directory

For running our proposed model for Acceptance prediction, run:

python ./classification_peer_review.py    \
--dataset path_to_preprocessed_files_directory

About

PEERRec: An AI-based approach to Automatically Generate Recommendations and Predict Decisions in Peer Review

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages