Skip to content

Commit d8747dc

Browse files
committed
address review comments in Smash.v
Signed-off-by: Ali Caglayan <[email protected]> <!-- ps-id: 95bd5cf8-565c-4e69-b214-bcb558855d2f -->
1 parent 3ced7a0 commit d8747dc

File tree

1 file changed

+24
-37
lines changed

1 file changed

+24
-37
lines changed

theories/Homotopy/Smash.v

Lines changed: 24 additions & 37 deletions
Original file line numberDiff line numberDiff line change
@@ -225,14 +225,14 @@ Definition functor_smash {A B X Y : pType} (f : A $-> X) (g : B $-> Y)
225225
Proof.
226226
srapply Build_pMap.
227227
- snrapply (Smash_rec (fun a b => sm (f a) (g b)) auxl auxr).
228-
+ intro b.
229-
rhs_V nrapply (gluel (f b)).
228+
+ intro a; cbn beta.
229+
rhs_V nrapply (gluel (f a)).
230230
exact (ap011 _ 1 (point_eq g)).
231-
+ intro a.
232-
simpl.
233-
rhs_V nrapply (gluer (g a)).
231+
+ intro b; cbn beta.
232+
rhs_V nrapply (gluer (g b)).
234233
exact (ap011 _ (point_eq f) 1).
235-
- exact (ap011 _ (point_eq f) (point_eq g)).
234+
- simpl.
235+
exact (ap011 _ (point_eq f) (point_eq g)).
236236
Defined.
237237

238238
Definition functor_smash_idmap (X Y : pType)
@@ -260,58 +260,45 @@ Definition functor_smash_compose {X Y A B C D : pType}
260260
(f : X $-> A) (g : Y $-> B) (h : A $-> C) (k : B $-> D)
261261
: functor_smash (h $o f) (k $o g) $== functor_smash h k $o functor_smash f g.
262262
Proof.
263+
pointed_reduce.
263264
snrapply Build_pHomotopy.
264265
{ snrapply Smash_ind.
265266
1-3: reflexivity.
266-
- intros x.
267+
- cbn beta.
268+
intros x.
267269
nrapply transport_paths_FlFr'.
268270
apply equiv_p1_1q.
269271
lhs nrapply Smash_rec_beta_gluel.
270-
rhs nrapply (ap_compose (functor_smash f g) _ (gluel x)).
271-
rhs nrapply ap.
272-
2: apply Smash_rec_beta_gluel.
273-
rhs nrapply ap_pp.
274-
rhs nrapply whiskerL.
275-
2: apply Smash_rec_beta_gluel.
276-
rhs nrapply concat_p_pp.
277-
apply whiskerR.
278-
rhs_V nrapply whiskerR.
279-
2: nrapply (ap_compose (sm _) _ (point_eq g)).
280-
lhs nrapply (ap011_pp sm 1 1).
281-
apply whiskerR.
282272
symmetry.
283-
rapply ap_compose.
284-
- intros y.
273+
lhs nrapply (ap_compose (functor_smash _ _) _ (gluel x)).
274+
lhs nrapply ap.
275+
2: nrapply Smash_rec_beta_gluel.
276+
lhs nrapply Smash_rec_beta_gluel.
277+
apply concat_1p.
278+
- cbn beta.
279+
intros y.
285280
nrapply transport_paths_FlFr'.
286281
apply equiv_p1_1q.
287282
lhs nrapply Smash_rec_beta_gluer.
288-
rhs nrapply (ap_compose (functor_smash f g) _ (gluer y)).
289-
rhs nrapply ap.
290-
2: apply Smash_rec_beta_gluer.
291-
rhs nrapply ap_pp.
292-
rhs nrapply whiskerL.
293-
2: apply Smash_rec_beta_gluer.
294-
rhs nrapply concat_p_pp.
295-
apply whiskerR.
296-
unfold point_eq, dpoint_eq.
297-
lhs nrapply (ap011_pp sm _ _ 1 1).
298-
apply whiskerR.
299-
rhs_V nrapply (ap011_compose sm (functor_smash h k) (dpoint_eq f) 1).
300283
symmetry.
301-
nrapply (ap011_compose' sm h). }
302-
simpl; pelim f g.
303-
by simpl; pelim h k.
284+
lhs nrapply (ap_compose (functor_smash _ _) _ (gluer y)).
285+
lhs nrapply ap.
286+
2: nrapply Smash_rec_beta_gluer.
287+
lhs nrapply Smash_rec_beta_gluer.
288+
apply concat_1p. }
289+
reflexivity.
304290
Defined.
305291

306292
Definition functor_smash_homotopic {X Y A B : pType}
307293
{f h : X $-> A} {g k : Y $-> B}
308294
(p : f $== h) (q : g $== k)
309295
: functor_smash f g $== functor_smash h k.
310296
Proof.
297+
pointed_reduce.
311298
snrapply Build_pHomotopy.
312299
{ snrapply Smash_ind.
313300
- intros x y.
314-
exact (ap011 _ (p x) (q y)).
301+
exact (ap011 _ (p x) (q y)).
315302
- reflexivity.
316303
- reflexivity.
317304
- intros x.

0 commit comments

Comments
 (0)