@@ -225,14 +225,14 @@ Definition functor_smash {A B X Y : pType} (f : A $-> X) (g : B $-> Y)
225225Proof .
226226 srapply Build_pMap.
227227 - snrapply (Smash_rec (fun a b => sm (f a) (g b)) auxl auxr).
228- + intro b .
229- rhs_V nrapply (gluel (f b )).
228+ + intro a; cbn beta .
229+ rhs_V nrapply (gluel (f a )).
230230 exact (ap011 _ 1 (point_eq g)).
231- + intro a.
232- simpl.
233- rhs_V nrapply (gluer (g a)).
231+ + intro b; cbn beta.
232+ rhs_V nrapply (gluer (g b)).
234233 exact (ap011 _ (point_eq f) 1).
235- - exact (ap011 _ (point_eq f) (point_eq g)).
234+ - simpl.
235+ exact (ap011 _ (point_eq f) (point_eq g)).
236236Defined .
237237
238238Definition functor_smash_idmap (X Y : pType)
@@ -260,58 +260,45 @@ Definition functor_smash_compose {X Y A B C D : pType}
260260 (f : X $-> A) (g : Y $-> B) (h : A $-> C) (k : B $-> D)
261261 : functor_smash (h $o f) (k $o g) $== functor_smash h k $o functor_smash f g.
262262Proof .
263+ pointed_reduce.
263264 snrapply Build_pHomotopy.
264265 { snrapply Smash_ind.
265266 1-3: reflexivity.
266- - intros x.
267+ - cbn beta.
268+ intros x.
267269 nrapply transport_paths_FlFr'.
268270 apply equiv_p1_1q.
269271 lhs nrapply Smash_rec_beta_gluel.
270- rhs nrapply (ap_compose (functor_smash f g) _ (gluel x)).
271- rhs nrapply ap.
272- 2: apply Smash_rec_beta_gluel.
273- rhs nrapply ap_pp.
274- rhs nrapply whiskerL.
275- 2: apply Smash_rec_beta_gluel.
276- rhs nrapply concat_p_pp.
277- apply whiskerR.
278- rhs_V nrapply whiskerR.
279- 2: nrapply (ap_compose (sm _) _ (point_eq g)).
280- lhs nrapply (ap011_pp sm 1 1).
281- apply whiskerR.
282272 symmetry.
283- rapply ap_compose.
284- - intros y.
273+ lhs nrapply (ap_compose (functor_smash _ _) _ (gluel x)).
274+ lhs nrapply ap.
275+ 2: nrapply Smash_rec_beta_gluel.
276+ lhs nrapply Smash_rec_beta_gluel.
277+ apply concat_1p.
278+ - cbn beta.
279+ intros y.
285280 nrapply transport_paths_FlFr'.
286281 apply equiv_p1_1q.
287282 lhs nrapply Smash_rec_beta_gluer.
288- rhs nrapply (ap_compose (functor_smash f g) _ (gluer y)).
289- rhs nrapply ap.
290- 2: apply Smash_rec_beta_gluer.
291- rhs nrapply ap_pp.
292- rhs nrapply whiskerL.
293- 2: apply Smash_rec_beta_gluer.
294- rhs nrapply concat_p_pp.
295- apply whiskerR.
296- unfold point_eq, dpoint_eq.
297- lhs nrapply (ap011_pp sm _ _ 1 1).
298- apply whiskerR.
299- rhs_V nrapply (ap011_compose sm (functor_smash h k) (dpoint_eq f) 1).
300283 symmetry.
301- nrapply (ap011_compose' sm h). }
302- simpl; pelim f g.
303- by simpl; pelim h k.
284+ lhs nrapply (ap_compose (functor_smash _ _) _ (gluer y)).
285+ lhs nrapply ap.
286+ 2: nrapply Smash_rec_beta_gluer.
287+ lhs nrapply Smash_rec_beta_gluer.
288+ apply concat_1p. }
289+ reflexivity.
304290Defined .
305291
306292Definition functor_smash_homotopic {X Y A B : pType}
307293 {f h : X $-> A} {g k : Y $-> B}
308294 (p : f $== h) (q : g $== k)
309295 : functor_smash f g $== functor_smash h k.
310296Proof .
297+ pointed_reduce.
311298 snrapply Build_pHomotopy.
312299 { snrapply Smash_ind.
313300 - intros x y.
314- exact (ap011 _ (p x) (q y)).
301+ exact (ap011 _ (p x) (q y)).
315302 - reflexivity.
316303 - reflexivity.
317304 - intros x.
0 commit comments