|
3 | 3 | Require Import Basics. |
4 | 4 | Require Import WildCat.Core. |
5 | 5 | Require Import WildCat.Equiv. |
| 6 | +Require Import Types.Prod. |
6 | 7 |
|
7 | 8 | (** * Product categories *) |
8 | 9 |
|
@@ -116,3 +117,71 @@ Definition emap11 {A B C : Type} `{HasEquivs A} `{HasEquivs B} `{HasEquivs C} |
116 | 117 | {a1 a2 : A} {b1 b2 : B} (fe1 : a1 $<~> a2) |
117 | 118 | (fe2 : b1 $<~> b2) : (F a1 b1) $<~> (F a2 b2) |
118 | 119 | := @emap _ _ _ _ _ _ _ _ _ _ _ _ (uncurry F) _ _ (a1, b1) (a2, b2) (fe1, fe2). |
| 120 | + |
| 121 | +(** ** Product functors *) |
| 122 | + |
| 123 | +Global Instance is0functor_prod_functor {A B C D : Type} |
| 124 | + (F : A -> B) (G : C -> D) `{Is0Functor _ _ F, Is0Functor _ _ G} |
| 125 | + : Is0Functor (functor_prod F G). |
| 126 | +Proof. |
| 127 | + apply Build_Is0Functor. |
| 128 | + intros [a1 c1] [a2 c2] [f g]. |
| 129 | + exact (fmap F f , fmap G g). |
| 130 | +Defined. |
| 131 | + |
| 132 | +Global Instance is1functor_prod_functor {A B C D : Type} |
| 133 | + (F : A -> B) (G : C -> D) `{Is1Functor _ _ F, Is1Functor _ _ G} |
| 134 | + : Is1Functor (functor_prod F G). |
| 135 | +Proof. |
| 136 | + apply Build_Is1Functor. |
| 137 | + - intros [a1 c1] [a2 c2] [f1 g1] [f2 g2] [p q]. |
| 138 | + exact (fmap2 F p , fmap2 G q). |
| 139 | + - intros [a c]. |
| 140 | + exact (fmap_id F a, fmap_id G c). |
| 141 | + - intros [a1 c1] [a2 c2] [a3 c3] [f1 g1] [f2 g2]. |
| 142 | + exact (fmap_comp F f1 f2 , fmap_comp G g1 g2). |
| 143 | +Defined. |
| 144 | + |
| 145 | +Global Instance is0functor_fst {A B : Type} `{!IsGraph A, !IsGraph B} |
| 146 | + : Is0Functor (@fst A B). |
| 147 | +Proof. |
| 148 | + apply Build_Is0Functor. |
| 149 | + intros ? ? f; exact (fst f). |
| 150 | +Defined. |
| 151 | + |
| 152 | +Global Instance is0functor_snd {A B : Type} `{!IsGraph A, !IsGraph B} |
| 153 | + : Is0Functor (@snd A B). |
| 154 | +Proof. |
| 155 | + apply Build_Is0Functor. |
| 156 | + intros ? ? f; exact (snd f). |
| 157 | +Defined. |
| 158 | + |
| 159 | +(** Swap functor *) |
| 160 | + |
| 161 | +Definition prod_swap {A B : Type} : A * B -> B * A |
| 162 | + := fun '(a , b) => (b , a). |
| 163 | + |
| 164 | +Global Instance isequiv_prod_swap {A B} |
| 165 | + : IsEquiv (@prod_swap A B) |
| 166 | + := Build_IsEquiv _ _ prod_swap prod_swap |
| 167 | + (fun _ => idpath) (fun _ => idpath) (fun _ => idpath). |
| 168 | + |
| 169 | +Global Instance is0functor_prod_swap {A B : Type} `{IsGraph A, IsGraph B} |
| 170 | + : Is0Functor (@prod_swap A B). |
| 171 | +Proof. |
| 172 | + snrapply Build_Is0Functor. |
| 173 | + intros a b. |
| 174 | + apply prod_swap. |
| 175 | +Defined. |
| 176 | + |
| 177 | +Global Instance is1functor_prod_swap {A B : Type} `{Is1Cat A, Is1Cat B} |
| 178 | + : Is1Functor (@prod_swap A B). |
| 179 | +Proof. |
| 180 | + snrapply Build_Is1Functor. |
| 181 | + - intros a b f g. |
| 182 | + apply prod_swap. |
| 183 | + - intros a. |
| 184 | + reflexivity. |
| 185 | + - reflexivity. |
| 186 | +Defined. |
| 187 | + |
0 commit comments