Skip to content

Commit 4db57a3

Browse files
committed
update smash after bifunctor refactor
Signed-off-by: Ali Caglayan <[email protected]> <!-- ps-id: 3d8be3f9-1880-4d41-82d7-dfaa6fbfe211 -->
1 parent f283078 commit 4db57a3

File tree

1 file changed

+13
-77
lines changed

1 file changed

+13
-77
lines changed

theories/Homotopy/Smash.v

Lines changed: 13 additions & 77 deletions
Original file line numberDiff line numberDiff line change
@@ -328,88 +328,24 @@ Proof.
328328
apply ap022; apply concat_p1.
329329
Defined.
330330

331-
Global Instance is0bifunctor_smash : IsBifunctor Smash.
331+
Global Instance is0bifunctor_smash : Is0Bifunctor Smash.
332332
Proof.
333-
snrapply Build_IsBifunctor.
334-
- intros X.
335-
snrapply Build_Is0Functor.
336-
intros Y B g.
337-
exact (functor_smash (Id _) g).
338-
- intros Y.
339-
snrapply Build_Is0Functor.
340-
intros X A f.
341-
exact (functor_smash f (Id _)).
342-
- intros X A f Y B g.
343-
snrapply Build_pHomotopy.
344-
+ snrapply Smash_ind.
345-
1-3: reflexivity.
346-
* intros x.
347-
nrapply transport_paths_FlFr'.
348-
apply equiv_p1_1q.
349-
lhs rapply (ap_compose (functor_smash f (Id _)) (functor_smash (Id _) g) (gluel x)).
350-
rhs rapply (ap_compose (functor_smash (Id _) g) (functor_smash f (Id _)) (gluel x)).
351-
lhs nrapply ap.
352-
1: apply Smash_rec_beta_gluel.
353-
rhs nrapply ap.
354-
2: apply Smash_rec_beta_gluel.
355-
lhs nrapply ap.
356-
1: apply concat_1p.
357-
lhs nrapply Smash_rec_beta_gluel.
358-
rhs nrapply (ap_pp _ _ (gluel x)).
359-
rhs nrapply whiskerL.
360-
2: apply Smash_rec_beta_gluel.
361-
f_ap.
362-
2: symmetry; apply concat_1p.
363-
exact (ap_compose (sm x) (functor_smash f (Id _)) (point_eq g)).
364-
* intros y.
365-
nrapply transport_paths_FlFr'.
366-
apply equiv_p1_1q.
367-
lhs rapply (ap_compose (functor_smash _ _) (functor_smash _ _) (gluer y)).
368-
rhs rapply (ap_compose (functor_smash (Id _) g) (functor_smash f (Id _)) (gluer y)).
369-
lhs nrapply ap.
370-
1: apply Smash_rec_beta_gluer.
371-
rhs nrapply ap.
372-
2: apply Smash_rec_beta_gluer.
373-
rhs nrapply ap.
374-
2: apply concat_1p.
375-
rhs nrapply Smash_rec_beta_gluer.
376-
lhs nrapply (ap_pp _ _ (gluer y)).
377-
lhs nrapply whiskerL.
378-
1: apply Smash_rec_beta_gluer.
379-
f_ap.
380-
2: apply concat_1p.
381-
exact (ap_compose (fun x => sm x y) (functor_smash (Id _) g) (point_eq f))^.
382-
+ apply moveL_pV.
383-
lhs nrapply concat_1p.
384-
simpl.
385-
cbn in f, g.
386-
lhs nrapply whiskerR.
387-
1: rapply (ap_compose (fun x => sm pt x) _ (point_eq g))^.
388-
rhs nrapply whiskerR.
389-
2: rapply (ap_compose (fun x => sm x pt) _ (point_eq f))^.
390-
simpl.
391-
by pelim f g.
333+
rapply Build_Is0Bifunctor'.
334+
nrapply Build_Is0Functor.
335+
intros [X Y] [A B] [f g].
336+
exact (functor_smash f g).
392337
Defined.
393338

394339
Global Instance is1bifunctor_smash : Is1Bifunctor Smash.
395340
Proof.
396-
snrapply Build_Is1Bifunctor.
397-
- intros X.
398-
snrapply Build_Is1Functor.
399-
+ intros Y B f' g' q.
400-
rapply (functor_smash_homotopic (Id _) q).
401-
+ intros Y; cbn.
402-
rapply functor_smash_idmap.
403-
+ intros Y A C f g.
404-
exact (functor_smash_compose (Id _) f (Id _) g).
405-
- intros Y.
406-
snrapply Build_Is1Functor.
407-
+ intros X A f g q.
408-
rapply (functor_smash_homotopic q (Id _)).
409-
+ intros X; cbn.
410-
rapply functor_smash_idmap.
411-
+ intros X A C f g.
412-
exact (functor_smash_compose f (Id _) g (Id _)).
341+
snrapply Build_Is1Bifunctor'.
342+
snrapply Build_Is1Functor.
343+
- intros [X Y] [A B] [f g] [h i] [p q].
344+
exact (functor_smash_homotopic p q).
345+
- intros [X Y].
346+
exact (functor_smash_idmap X Y).
347+
- intros [X Y] [A B] [C D] [f g] [h i].
348+
exact (functor_smash_compose f g h i).
413349
Defined.
414350

415351
(** ** Symmetry of the smash product *)

0 commit comments

Comments
 (0)