@@ -328,88 +328,24 @@ Proof.
328328 apply ap022; apply concat_p1.
329329Defined .
330330
331- Global Instance is0bifunctor_smash : IsBifunctor Smash.
331+ Global Instance is0bifunctor_smash : Is0Bifunctor Smash.
332332Proof .
333- snrapply Build_IsBifunctor.
334- - intros X.
335- snrapply Build_Is0Functor.
336- intros Y B g.
337- exact (functor_smash (Id _) g).
338- - intros Y.
339- snrapply Build_Is0Functor.
340- intros X A f.
341- exact (functor_smash f (Id _)).
342- - intros X A f Y B g.
343- snrapply Build_pHomotopy.
344- + snrapply Smash_ind.
345- 1-3: reflexivity.
346- * intros x.
347- nrapply transport_paths_FlFr'.
348- apply equiv_p1_1q.
349- lhs rapply (ap_compose (functor_smash f (Id _)) (functor_smash (Id _) g) (gluel x)).
350- rhs rapply (ap_compose (functor_smash (Id _) g) (functor_smash f (Id _)) (gluel x)).
351- lhs nrapply ap.
352- 1: apply Smash_rec_beta_gluel.
353- rhs nrapply ap.
354- 2: apply Smash_rec_beta_gluel.
355- lhs nrapply ap.
356- 1: apply concat_1p.
357- lhs nrapply Smash_rec_beta_gluel.
358- rhs nrapply (ap_pp _ _ (gluel x)).
359- rhs nrapply whiskerL.
360- 2: apply Smash_rec_beta_gluel.
361- f_ap.
362- 2: symmetry; apply concat_1p.
363- exact (ap_compose (sm x) (functor_smash f (Id _)) (point_eq g)).
364- * intros y.
365- nrapply transport_paths_FlFr'.
366- apply equiv_p1_1q.
367- lhs rapply (ap_compose (functor_smash _ _) (functor_smash _ _) (gluer y)).
368- rhs rapply (ap_compose (functor_smash (Id _) g) (functor_smash f (Id _)) (gluer y)).
369- lhs nrapply ap.
370- 1: apply Smash_rec_beta_gluer.
371- rhs nrapply ap.
372- 2: apply Smash_rec_beta_gluer.
373- rhs nrapply ap.
374- 2: apply concat_1p.
375- rhs nrapply Smash_rec_beta_gluer.
376- lhs nrapply (ap_pp _ _ (gluer y)).
377- lhs nrapply whiskerL.
378- 1: apply Smash_rec_beta_gluer.
379- f_ap.
380- 2: apply concat_1p.
381- exact (ap_compose (fun x => sm x y) (functor_smash (Id _) g) (point_eq f))^.
382- + apply moveL_pV.
383- lhs nrapply concat_1p.
384- simpl.
385- cbn in f, g.
386- lhs nrapply whiskerR.
387- 1: rapply (ap_compose (fun x => sm pt x) _ (point_eq g))^.
388- rhs nrapply whiskerR.
389- 2: rapply (ap_compose (fun x => sm x pt) _ (point_eq f))^.
390- simpl.
391- by pelim f g.
333+ rapply Build_Is0Bifunctor'.
334+ nrapply Build_Is0Functor.
335+ intros [X Y] [A B] [f g].
336+ exact (functor_smash f g).
392337Defined .
393338
394339Global Instance is1bifunctor_smash : Is1Bifunctor Smash.
395340Proof .
396- snrapply Build_Is1Bifunctor.
397- - intros X.
398- snrapply Build_Is1Functor.
399- + intros Y B f' g' q.
400- rapply (functor_smash_homotopic (Id _) q).
401- + intros Y; cbn.
402- rapply functor_smash_idmap.
403- + intros Y A C f g.
404- exact (functor_smash_compose (Id _) f (Id _) g).
405- - intros Y.
406- snrapply Build_Is1Functor.
407- + intros X A f g q.
408- rapply (functor_smash_homotopic q (Id _)).
409- + intros X; cbn.
410- rapply functor_smash_idmap.
411- + intros X A C f g.
412- exact (functor_smash_compose f (Id _) g (Id _)).
341+ snrapply Build_Is1Bifunctor'.
342+ snrapply Build_Is1Functor.
343+ - intros [X Y] [A B] [f g] [h i] [p q].
344+ exact (functor_smash_homotopic p q).
345+ - intros [X Y].
346+ exact (functor_smash_idmap X Y).
347+ - intros [X Y] [A B] [C D] [f g] [h i].
348+ exact (functor_smash_compose f g h i).
413349Defined .
414350
415351(** ** Symmetry of the smash product *)
0 commit comments