@@ -188,7 +188,7 @@ Section Smash.
188188 lhs nrapply ap_V.
189189 apply inverse2.
190190 apply Smash_rec_beta_gluel.
191- Defined .
191+ Defined .
192192
193193 Definition Smash_rec_beta_gluer' {P : Type } {Psm : X -> Y -> P} {Pl Pr : P}
194194 (Pgl : forall a, Psm a pt = Pl) (Pgr : forall b, Psm pt b = Pr) (a b : Y)
@@ -296,63 +296,36 @@ Definition functor_smash_homotopic {X Y A B : pType}
296296 (p : f $== h) (q : g $== k)
297297 : functor_smash f g $== functor_smash h k.
298298Proof .
299- destruct f as [f f_eq], g as [g g_eq].
300- revert p q.
301299 pointed_reduce.
302300 snrapply Build_pHomotopy.
303301 { snrapply Smash_ind.
304- - intros x y.
302+ - intros x y; simpl .
305303 exact (ap011 _ (p x) (q y)).
306304 - reflexivity.
307305 - reflexivity.
308306 - intros x.
309- nrapply transport_paths_FlFr'.
307+ nrapply transport_paths_FlFr'; simpl .
310308 lhs nrapply concat_p1.
311309 lhs nrapply Smash_rec_beta_gluel.
312310 rhs nrapply whiskerL.
313311 2: nrapply Smash_rec_beta_gluel.
314- rhs nrapply concat_p_pp.
315- apply moveL_pM.
316- lhs nrapply concat_pp_p.
317- rhs_V nrapply (ap011_pp sm).
318- rhs nrapply ap022.
319- 2: apply moveR_pM, (dpoint_eq q).
320- 2: apply concat_p1.
321- apply moveR_Mp.
322- rhs_V nrapply whiskerR.
323- 2: apply ap011_V.
324- rhs_V nrapply ap011_pp.
325- rhs nrapply ap011.
326- 2: apply concat_Vp.
327- 2: apply concat_1p.
328- symmetry.
329- lhs nrapply ap011_is_ap.
330- lhs nrapply concat_p1.
331- nrapply ap_sm_left.
312+ induction (p x); simpl.
313+ rhs_V nrapply concat_pp_p.
314+ apply whiskerR.
315+ nrapply ap_pp.
332316 - intros y.
333- nrapply transport_paths_FlFr'.
317+ nrapply transport_paths_FlFr'; simpl .
334318 lhs nrapply concat_p1.
335319 lhs nrapply Smash_rec_beta_gluer.
336320 rhs nrapply whiskerL.
337321 2: nrapply Smash_rec_beta_gluer.
338- rhs nrapply concat_p_pp.
339- apply moveL_pM.
340- lhs nrapply concat_pp_p.
341- rhs_V nrapply (ap011_pp sm).
342- rhs nrapply ap022.
343- 3: apply moveR_pM, (dpoint_eq p).
344- 2: apply concat_p1.
345- apply moveR_Mp.
346- rhs_V nrapply whiskerR.
347- 2: apply ap011_V.
348- rhs_V nrapply ap011_pp.
349- rhs nrapply ap011.
350- 2: apply concat_1p.
351- 2: apply concat_Vp.
352- symmetry.
353- nrapply ap_sm_right. }
354- lhs nrapply (ap022 _ (dpoint_eq p) (dpoint_eq q)).
355- rapply ap011_pp.
322+ induction (q y); simpl.
323+ rhs_V nrapply concat_pp_p.
324+ apply whiskerR.
325+ nrapply (ap011_pp _ _ _ 1 1). }
326+ symmetry; simpl.
327+ lhs nrapply concat_p1.
328+ apply ap022; apply concat_p1.
356329Defined .
357330
358331Global Instance is0bifunctor_smash : IsBifunctor Smash.
0 commit comments